Secure Programming Lab

A.A. 2022/2023
Corso di Laurea in Ingegneria delle Telecomunicazioni

A. Introduction

Paolo Ottolino
Politecnico di Bari

B DIPARTIMENTO DI
— INGEGNERIA ELETTRICA
— E DELLINFORMAZIONE

Secure Programming Lab

Learning Objectives

1. Getting:
* Cyber Security: Protection needs
* Secure Programming: key Practices
 Nowadays architecture: Development methodologies
That should be involved every time enterprise application is developed.

2. Building the foundation for implementing DevSecOps

3. ...and also understand enterprise applications in order to better integrate
with
 the operational environment
* the most possible already developed components
e The business environment

This course collects and merges information from many sources

Secure Programming Lab: Course Program

Intro Secure Programming: « Who-What-Why-When-Where-How»

Building Security in: Buffer Overflow, UAF, Command Inection

Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration
SWA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

Security & Protection: Risks, Attacks. CIA -> AAA (AuthN, AuthZ, Accounting) -> IAM, SIEM, SOAR
Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps

Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR)
Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins
Architecture and Processes 3: OWASP DSOMM, NIST SSDF

Operating Environment: Kali Linux on WSL

Python: Powerful Language for easy creation of hacking tools

SAST: Endogen, Exogen factors, SAST (cfr. SourceCodeAnalysisTools), SonarQube

Exercises: SecureFlag

ErA-STIOMMOOPR

Secure Programs: Introduction

Secure Programming: Introduction
Cyber Threats: a perspective

3. Weaknesses: Tools (OWASP Top10 Cyber Kill Chain, Glossary (security elements of an
attack)

Secure Design: Best Practices (NIST CSF, ZTA, DevSecOps)

5. Code Vulnerabilities: Buffer Overflow, Insecure Input

A.1 Secure Programming: Introduction

Secure Programming

1.

Secure Programming: developing software in such a way to
reduce the probability of damages from any usage

Cybersecurity (why): reducing the risk (ideally eliminating the
possibility) that the applications could be exploited through
cyber-threats

Weaknesses (what): removing defects in architecture and
software that can be exploited to attack companies and its
computer systems

Proactive Design (where): integrate the architecture so that
applications can operate more safely

Defensive Coding (how): developing application in such a way
that guards against the accidental introduction of software
vulnerabilities

Official Birthday (when): November 2279, 1988 (Morris
Worm)

Cybersecurity

U

Weaknesses

] [

Proactive Design

Defensive Coding

A.1b Secure Programming: Introduction
Cybersecurity (why): risk of cyber-threats

Quantitative Risk == ARO x SLE

probability (ARO) of loosing money
(SLE) from incidents or attacks

Overall Risk Severity

(Threats) by exploiting 1+ HIGH Medium Critical
vulnerability.
MEDIUM Low

Impact
Usually, the security risk is calculated LOW Note Low Medium
on an annual .bas.ls o ow VEDIUM IGH
The overall Risk is the combination of
all the single impacts. Likelihood

Qualitative Risk (e.g. OWASP Risk Methodology)

ARO: Annual Rate of Occurrence - Likelihood (probability), external factor: threat
SLE: Single Loss Expectancy - Impact (money), internal factor: vulnerability

A.1c Secure Programming: Introduction

Weaknesses (what): removing exploitable defects in software and architecture

Al0. Server - Side Request Forgery AO1. Broken Access Control

AO09. Security Logging and

Monitoring Failures AO02. Cryptographic Failures

AO08. Software and
Data Integrity Failures

AO03. Injection

OWASP
TOP 10 2021

A07. Identification and
Authentication Failures

pi;)\}’ AO4. Insecure Design

AO06. Vulnerable and Outdated Configurations AOS. Security Misconfiguration

(Open Web Application Security Project) OWASP Top 10
The 10 most important and frequent vulnerabilities identified 2017-2021

A vulnerability is a hole or a weakness in the
application, which can be a design flaw or an
implementation bug, that allows an attacker to cause
harm to the stakeholders of an application.

Stakeholders include the application owner,
application users, and other entities that rely on the
application.

Examples:

eLack of input validation on user input

*Lack of sufficient logging mechanism
*Fail-open error handling

*Not closing the database connection properly

For a great overview, check out the OWASP Top Ten
Project.

https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten

A.1d Secure Programming: Introduction

Proactive Design (where): safer architecture integration

m </>] | </>
Nowadays application 0 email [5:) il
software should oks Network
guarantee interoperability, R
that is the ability to 8 = 2]
communicate and share PClLaptop =Y
information about
cybersecurity. EREC
Server/VM
CASB /‘L_‘—_— Centralized Policy and Posture g E
No more silos: every Qs'aas N et

component is part of a CWPP V4 Identity Fabric PN Data Classification [EEeRtS
bi inf laaS J// Security Analytics and ¥ ' t]
igger infrastructure, e :

Cloud Intelligence

giving some service and PaaS i er}l\\]
= i

obtaining some other MFA IGA AM
back. L,
Users am

= =] Robots ﬁ Processes

Gartner CSMA: Cyber Security Mesh Architecture

A.le Secure Programming: Introduction

Defensive Coding (how): developing without security bugs

The causes of security breaches are varied, but

14 SO0 (ol 020 (| o e 200 1 2 e 1% 15, i N many of them owe to a defect (or bug) or design
0600 Ondkom shaqkc] {,.;,,, B s ais flaw in a targeted computer system's software.
J 400 . sw‘y} = onfom / G087 §¥YC P95 <cawh
137w, (032 HP ~me ﬁw,m) Y4/5725055(-2)

3y PRO > 2. 13oya6yiS

Com ok 303067005 i After finding a moth inside the Harvard Mark Il
RIons G-x =~ 033] srowj xer St | s computer on September 9th, 1947 at 3:45 p.m,,
4 A thow. Aot | Grace Murray Hopper logged the first computer
1700 | Started Co —"1""/} bug in her log book.
a e 5&V\e : lo. (Sh\e cJ\ecE)
S _.]-:u beol i a_‘I*‘ r j-f“‘- TE,“‘[‘

She wrote the time and the sentence: “First actual
@al "*70 ?q,m‘ case of bug being found”.
\Mo'ﬁb (I r\’.\q\\

1Say

Nowadays, the term “bug” in computer science is
not taken literally, of course. We use it to talk

165 /0 QS‘::{J“““ case oo 5“1 L¢l.h1 {ouni. about a flaw or failure in a computer program that
1300 | olead fpem. causes it to produce an unexpected result or

crash.

The first bug (Source: Naval Historical
Center Online Library Photograph)

A.1f Secure Programming: Introduction
Official Birthday (when): November 22°, 1988 (Morris Worm)

The Merris Internet Wean
source code

“hc—th—---bdtn\l--w
':::,_ P 640, Vb s b b o o
.....--....un..w—-num

"...nﬂh-w‘-m”-“—ﬂ
[
Voo (s it P

Floppy disk containing the source
code for the Morris Worm, at
the Computer History Museum

The Morris worm or Internet worm of November 2, 1988, is one of the
oldest computer worms distributed via the Internet, and the first to gain
significant mainstream media attention.

It resulted in the first felony conviction in the US under the 1986 Computer
Fraud and Abuse Act.

It was written by a graduate student at Cornell University, Robert Tappan
Morris, and launched on 8:30 pm November 2, 1988, from
the Massachusetts Institute of Technology network.

The worm exploited several vulnerabilities of targeted systems, including:

*A hole in the debug mode of the Unix sendmail program

*A buffer overflow or overrun hole in the finger network service

*The transitive trust enabled by people setting up network logins with

no password requirements via remote execution (rexec) with Remote Shell (rsh), termed
rexec/rsh

https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Felony
https://www.congress.gov/bill/99th-congress/house-bill/4718
https://www.congress.gov/bill/99th-congress/house-bill/4718
https://en.wikipedia.org/wiki/Cornell_University
https://en.wikipedia.org/wiki/Robert_Tappan_Morris
https://en.wikipedia.org/wiki/Robert_Tappan_Morris
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Sendmail
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Fingerd
https://en.wikipedia.org/wiki/Login
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Berkeley_r-commands
https://en.wikipedia.org/wiki/Remote_Shell
https://en.wikipedia.org/wiki/Floppy_disk
https://en.wikipedia.org/wiki/Computer_History_Museum

A.2 Cyber Threats: a perspective

Reduce Losses, Know Occurrences

A.1b Secure Programming: Introduction |
Cybersecurity (why): risk of cyber-threats
o o SLE could be

| Quantitative Risk == ARO x SLE reduced, working
probability (ARO) of loosing money | biliti
(SLE) from incidents or attacks Overall Risk Severity on vu "T;a fities
(Threats) by exploiting 1+ HiGH || Medim Grtca (internal factors)
vulnerability.

mpact MEDIUM Low Medium ARO could be only

Usually, the security risk is calculated LOW Note Low Medium known since it
on an annual -basfls o Low MEDIUM HIGH depends basely on
The overall Risk is the combination of threats (external
all the single impacts. Likelihood factors)

Quialitative Risk (e.g. OWASP Risk Methodology)
=>» Sun Tzu Ping Fa

ARO: Annual Rate of Occurrence - Likelihood (probability), external factor: threat
SLE: Single Loss Expectancy - Impact (money), internal factor: vulnerability

A.2 Cyber Threats: a perspective

Reduce Losses, Know Occurrences

Sun Tzu Ping Fa
“If you know the enemy (ARO) and know yourself (SLE), you need not fear the result of a hundred battles.

If you know yourself (SLE) but not the enemy (AR®), for every victory gained you will also suffer a defeat.

If you know neither the enemy (AR®) nor yourself (SEE), you will succumb in every battle.”

(from ch. Il “Attack by Stratagems”, #18)

SLE =» Vulnerabilities: combination of Business and the 3 remaining layers (“Weaknesses”, “Proactive Design”
and “Defensive Coding”.

ARO =» Threats: external factors

Let’s have a look at ARO = (Cyber) Threats

A.2a Cyber Threats: a perspective

FBI Attacker Profiles

Cyber Threat Actors

Unstructured Pt

Insider Money

Crime Money

Espionage Information

Hactivism Socio-Politics

Warfare War

Terrorism War

See «An introduction to the cyber threat environment»
https://cyber.gc.ca/en/guidance/introduction-cyber-threat-environment

https://cyber.gc.ca/en/guidance/introduction-cyber-threat-environment

A.2b Cyber Threats: a perspective

Cyber Threats: Historical Trends

Percentages

2021

: 11 :
i S— 12 7.2

2020

®Crime

2019

i Hacktivism
2018

™ Espionage

2017
m Warfare

0%

20%

40%
° 60%
80%
100%

A.2c Cyber Threats: a perspective .

Exploting, Profiteering, Wasting

Exploiting, Profiteering, Wasting

e Exploiting (Intruding): access system in order to:

— Control the performed actions
— Harvest Information

& _ e * Profiteering: access to system, in order to take advantage from:

o,

=== == = — elaboration
— network capacities (to 3° parties)

e Wasting (Damaging): make the system not accessible from anyone

A.2d Cyber Threats: a perspective =

Adversary-Risk mapping (exemplification)

Warfare Espionage

Steal Money Steal Info Steal Info Steal Info
Read User-Info

Intruding

& Spam
-8 DDoS (3° party)

cdeaega

Profiteering

DDOS (competitors) Defacement Break System

Damaging

71% 15% 7% 7%

A.2e Cyber Threats: a perspective .
Cyber Attack to Clients 1/3

Motives

_

Network of computers compromised by malware and controlled remotely for illegal
purposes. You join a botnet unknowingly when your computer is not properly protected and
BotNet updated. Botnets pose an insidious threat as an infection can remain undetected and silent

for a long time to be exploited later to produce massive damage to third-party systems

Restricting access to the resources hosted by an infected device, demanding a ransom to be
Ramsonware paid to remove it

Tailored Set of stealthy and continuous cyber hacking processes, specially orchestrated to target a
arlore specific entity, damaging only systems with particular requirements

A.2f Cyber Threats: a perspective
Cyber Attack to Clients 1/3

Means

process of subjecting a system, perpetrated in one of the following ways:

opening infected emails or documents attached to them

Phishing

hidden in programs downloaded by users (e.g. cracks), aimed at disturbing the normal
Malware .
functioning of a system

_ exploit specific vulnerabilities of out-of-date systems and applications
Known Vulnerabilities

Cybersecurity

A.2g Cyber Threats: a perspective

Cyber Attack to Clients 3/3

Adversary-Attack mapping (exemplification for clients)

Warfare Espionage
Ramsonware Tailored Tailored
Tailored
Intruding
BotNet
& o
(== === =]
Profiteering
86% 5% 9%

A.2h Cyber Threats: a perspective

Historical Background: Operazione Mariposa (2009)

BotNet/Crime: 13 milions systems in 190+ countries

ButterFly Network Solutions (BFNS) is providing quality,
reliable, stable, fast and feature-full software, based on own
developed networking protocols. We are offering advanced
command&control remote systems for masses, advanced
reverse proxy solutions for personal or business use and
custom network-related projects on demand

Home [ButterFly Flooder

ButterFly Flooder

ButterFly Flooder (BFF) is an advanced commandé&control system for remote PCs that allows you to fully
stress performance and stability of network applications. Besides flooding capabilities it also provides
extended commanding options that no other solutions have. The third big feature is modular design, allowing
you to pické&load modules on your own. All this built on top of newest ButterFly protocol gives you the best
experience and reliability such software can offer!

ButterFly Flooder
Features
Changelog
Screenshots
Buy
FAQ

Working Diffusion: developed using the Butterfly kit, a software package sold online for between €500-1500, with
which 10,000 unigue software packages have been created and around 700 BotNets built (in addition to

Mariposa)

Scope Used mainly for:
o DDoS (BlackEnergy)
o Hijacking (DNS poisoning)
o Banking

Cybersecurity

o

A.2i Cyber Threats: a perspective e
Historical Background: RSA SecurlD Breach (2011)

Tailored/Espionage (Crime)
To Cur Customers:

On March 17, 2011, RSA publicly disclosed that it had detected a very
sophisticated cyber attack on its systems, and that certain information
related to the RSA SecurlD® product had been extracted. We immediately
published best practices and our prioritized remediation steps, and
proactively reached out to thousands of customers to help them implement
those steps. We remain convinced that customers who implement these
steps can be confident in their continued security, and customers in all

industries have given us positive feedback on our remediation steps.

Arthur W. Coviello,
ar.

Certain characteristice of the attack on RSA indicated that the perpetrator's
maost likely motive was to obtain an element of security information that

Working The attack took place in several stages:

1. Collection of company information

2. Creation of a Phishing email, titled “2011 Recruitment Plan” and containing an xIs attachment “2022 Recruitment plan 2011.xIs”,
containing a “zero-day” exploit

Determination of 2 (small) groups of RSA employees, potential "good" victims
Sending the first phih email to the first group

Sending the second phishing email to the second group

Malicious Code Execution Some user has installed the backdoor (Poison Ivy Trojan).
Privilege escalation

Access to servers containing SecurlD key management information

© © N o g s> w

Sending information to external servers and deleting information from RSA servers

Scope Exfiltrate data from RSA to invalidate the OTP authentication mechanisms provided by devices generally used for Web Banking

A.2j Cyber Threats: a perspective i
Historical Background: Zero Access (2013)

BotNet/Crime: 2 milions of systems — current most «popular» BotNet

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Peer IP Addresses
Working Robustness: architecture based on Peer-2-Peer logic (resilience to destruction)

Scope Earn from advertisements, through:
» search results hijacking (Google, Bing, Yahoo)

» redirection to unsolicited sites

A.2k Cyber Threats: a perspective
Historical Background: Carbanak (2015)

. . . - Up to 100 financial institutions were hit at more than 300 IP addresses
Tailored/Espionage-Crime: $ 1 Billion booty i

in almost 30 countries worldwide.

Number of target IPs by country

=9 N O - 35 m 35 - 200

Working The attack took place in several stages:

Sending malware by email

Gain control of some locations

Study of the behavior of employees who operate money transfers
Study of the work of IT personnel, to access the central DB

play money transfer: adding a "0" to the balance of a low active customer and transferring the created funds

L

theft at ATMs with local solicitors

Scope Collecting physical money:
* Exempt from ATMs (Windows XP hosts)
* Collected via the SWIFT network

A.2| Cyber Threats: a perspective o
Historical Background: Hack Back (USA) - Active Cyber Defense Certainty Act of 2019

Hack Back - Conferimento dei poteri di Contrasto (Hack-Back) all”’Intelligence italiana

Proposed Amendment in 2017 by Tom Graves _
ACDC act «Highway to Hell»: https://www.congress.gov/bill/116th- «
congress/house-bill /3270 e

Working To receive this type of waiver, companies must notify the FBI (National Cyber Investigation Joint Task Force):

1. Details about the counterattack tools in possession
2. How evidence of the initial cyber intrusion is kept

3. Methodologies and mechanisms with which it is intended to avoid damaging the systems of unarmed third
parties

Finalita Protect companies from legal prosecution should they proceed to fight back against the cyber attacker

https://history.house.gov/People/Listing/G/GRAVES,-Tom-(G000560)/
https://www.congress.gov/bill/116th-congress/house-bill/3270
https://www.congress.gov/bill/116th-congress/house-bill/3270

A.2| Cyber Threats: a perspective
Historical Background: Hack Back (Italy) - Art. 37 del DL 11/2022 (“Aiuti bis”)

Hack Back - Conferimento dei poteri di Contrasto (Hack-Back) all”’Intelligence italiana

Art. 37 Disposizioni in materia di

intelligence in ambito cibernetico

Funzionamento Il Presidente del Consiglio dei ministri, acquisito il parere del Comitato interministeriale per la sicurezza
della Repubblica e sentito il Comitato parlamentare per la sicurezza della Repubblica, emana disposizioni
per lI'adozione di misure di intelligence di contrasto in ambito cibernetico:

1.
2.
3.
4,

in situazioni di crisi o di emergenza

a fronte di minacce che coinvolgono aspetti di sicurezza nazionale
e non siano fronteggiabili solo con azioni di resilienza,

anche in attuazione di obblighi assunti a livello internazionale

Tali misure sono attuate da AISI ed AISE
Finalita Proteggere gli interessi e la sicurezza nazionali, autorizzando misure di contrasto in ambito cibernetico,
scelte secondo criteri di necessita e proporzionalita al rischio calcolato

(Zyb_ersecuri
o N

https://def.finanze.it/DocTribFrontend/getAttoNormativoDetail.do?ACTION=getArticolo&id=%7b3A3CC33D-5DEC-4A93-BDF4-6139EF398468%7d&codiceOrdinamento=200003700000000&articolo=Articolo%2037
https://def.finanze.it/DocTribFrontend/getAttoNormativoDetail.do?ACTION=getArticolo&id=%7b3A3CC33D-5DEC-4A93-BDF4-6139EF398468%7d&codiceOrdinamento=200003700000000&articolo=Articolo%2037

T -

A.3 Weaknesses: Tools

Introduction ~

A.1c Secure Programming: Introduction

Weaknesses (what): removing exploitable defects in software and architecture

According to Robert P. Cook,
is hard to develop programs

AlO. Server - Side Request Forgery AO1. Broken Access Control A Vulnerability is a hole ora Weakness in the
application, which can be a design flaw or an without bugs.
implementation bug, that allows an attacker to cause

A02. Cryptographic Failures harm to the stakeholders of an application.

AO09. Security Logging and
Monitoring Failures

Some useful tools for

Stakeholders include the application owner, avoiding inserting the most
application users, and other entities that rely on the .)
. L trivial ones, at least:
A08. Software and AO3. Injection app||cat|0n_
Data Integrity Failures
TOP 10 2021 Examples:
_ o _ OWASP Top1l0: practical for
*Lack of input validation on user input Web App

AO07. Identification and

Authentication Failures {‘é{-}s}

AO04. Insecure Design

Lack of sufficient logging mechanism

*Fail-open error handling CWE: taxonomy for more
AO6. Vulnerable and Outdated Configurations AOS5. Security Misconfiguration *Not cIosing the database connection properly theoretyca| purposes

For a great overview, check out the OWASP Top Ten
Project. CVE: common vulnerabilities
in adopted platforms (and
libraryies)

(Open Web Application Security Project) OWASP Top 10
The 10 most important and frequent vulnerabilities identified 2017-2021

A.3a Weaknesses: Tools

Introduction

1. OWASP Top1l0: de facto industry WebAppSec standard
(bare-minimum/starting-point for coding and testing). First
one developed in 2003

2. CWE: de facto weakness types standard for SW & HW
(taxonomy for classifying and defining weaknesses, in order
to differentiate them). Established in 2006

3. CVE: de facto vulnerability enumeration about COTS
(common vulnerability classification, in order to chose
patched products). Presented in 1999

A.3.b Weaknesses: Tools =
OWASP Top10 —; i

List of main 10 categories of vulnerabilities in Web Applications
 Updated: every 3-4 years
 Web 2.0: First published in 2003 (then 2004, 2007, 2010, 2013, 2017, 2021. see history)

* Data Driven: based on statistics about vulnerability assessment submission

2017 2021

A01:2021-Broken Access Control
A02:2021-Cryptographic Failures

~» AD03:2021-Injection

(New) A04:2021-Insecure Design

A05:2021-Security Misconfiguration
A06:2021-Vulnerable and Outdated Components

=L AD7:2021-ldentification and Authentication Failures

AD1:2017-Injection
AD2:2017-Broken Authentication
AD3:2017-5ensitive Data Exposure
AD4:2017-XML External Entities [XXE)
A05:2017-Broken Access Control
A06:2017-Security Misconfiguration
A07:2017-Cross-Site Scripting (XSS)

A08:2017-Insecure Deserialization / {New) AD8:2021-Software and Data Integrity Failures
A09:2017-Using Components with Known Vulnerabilities P—/_’/—A‘)ADB:IGH—SEl:uriw Logging and Monitoring Failures*
A10:2017-Insufficient Logging & Monitoring (New) A10:2021-Server-Side Request Forgery (SSRF)*

* From the Survey

https://www.hahwul.com/cullinan/history-of-owasp-top-10/

A.3.b Weaknesses: Tools
OWASP Top10: Comparison of 2003, 2004, 2007, 2010 and 2013 Releases

OWASP Top Ten Entries (Unordered) 2003 2004Re|2%?,?952010 2013

Unvalidated Input
Buffer Overflows
Denial of Service
Injection

Cross Site Scripting (XSS) A4 A4 Al A2 A3 - removed
Broken Authentication and Session Management A3 A3 A7 A3 A2 I renamed
Insecure Direct Object Reference A411] A4 A4

Cross Site Request Forgery (CSRF) A5 A5 A8 ok

Security Misconfiguration A10QBIE! A6 A5
Missing Functional Level Access Control A2l A8 A7016]
Unvalidated Redirects and Forwards Al0 Al0

A8I6IIS]

Al0

Information Leakage and Improper Error Handling
Malicious File Execution

Sensitive Data Exposure

Insecure Communications

Remote Administration Flaws

Using Known Vulnerable Components AQ [181[19]
[1] Renamed “Broken Access Control” from T10 2003 [6] Renamed “Web and Application Server ” from [11] Split “Broken Access Control” from T10 [16] Renamed “Failure to Restrict URL Access”
i) T10 2003 2004 from T10 2010
[2] Split “Broken Access Control” from T10 2003 [7] Split “Insecure Configuration Management” from [12] Renamed “Insecure Configuration [17] Renamed “Insecure Cryptographic Storage”
[3] Renamed “Command Injection Flaws” from T10 T10 2004 Management” from T10 2004 from T10 2010
2003 [8] Reconsidered during T10 2010 Release Candidate [13] Split “Broken Access Control” from T10 [18] Split “Insecure Cryptographic Storage” from
(RC) 2004 T10 2010
[4] Renamed “Error Handling Problems” from T10 2003 [9] Renamed “Unvalidated Parameters” from T10 [14] Renamed “Improper Error Handling” from [19] Split “Security Misconfiguration” from T10
2003 T10 2004 2010
5] Renamed “Insecure Use of Cryptography” from T10 P ”
[20]03 yptography [10] Renamed “Injection Flaws” from T10 2007 [15] Renamed “Insecure Storage” from T10

2004

A.3c Weaknesses: Tools
OWASP Top10:2021

List of 10 main categories of vulnerabilities in Web Applications

M a & 0

A01:2021-Broken A02:2021-
Access Control Cryptographic Failures

N O

®

A06:2021-Vulnerable and
Outdated Components

A07:2021-Identification
and Authentication
Failures

A03:2021-Injection

NNV
A A

A08:2021-Software and
Data Integrity Failures

A04:2021-Insecure
Design

@
O

A09:2021-Security
Logging and Monitoring
Failures

T -

WWEELGESTS

Lt

A05:2021-Security
Misconfiguration

>

-
-y
W<

Aidn
A10:2021-Server Side
Request Forgery

A.3d Weaknesses: Tools
MITRE: CWE

https://cwe.mitre.org

MITRE began working on the issue of categorizing software weaknesses as early 1999 when it launched the Common
Vulnerabilities and Exposures (CVE®) List. As part of the development of CVE, MITRE’s CVE Team developed a preliminary
classification and categorization of vulnerabilities, attacks, faults, and other concepts to help define common software

weaknesses.

Common Weakness Enumeration
A Community-Developed List of Software & Hardware Weakness Tipes
.

Home About CWE List Scoring i i e C i News Search

CWE™ is a community-developed list of software and hardware weakness types. It serves as a common language, a measuring stick for security tools, and as a baseline for weakness identification, mitigation, and prevention

efforts.
CWE List Quick Access Viewing Customized CWE information
s h CWE The CWE Team, in collaboration with the CWE/CAPEC User Experience Working Group (UEWG), has updated how users e
earch can view Weaknesses to display only those weakness details that are most relevant to them, as noted below. This
update replaces the often-overlooked dropdown menu with four new filter options that better reflect the needs of our Mews Hardware Weaknesses Added to CWE List 3 Years
neep e Google audience. Ago Today,
These content viewing options are available at the top of each CWE Weakness. Please review the hover text below for News "CWE-CAPEC ICS/OT SIG" Booth at S4x23
View CWE a description of each content filter.
Conceptual Operational Mapping Friendly Complete News CWE version 4.10 Now Available
n Blog Community Actively Working to Enhance CWE's
Community Engagement ICS/OT Coverage
s Hardware CWE Special Interest Group Join HW CWE SIG Podcast "Using CWE/CAPEC in Education”
ICS/OT Special Interest Group Join ICS/OT SIG
REST API Working Group Join REST API WG More >>
Total Weaknesses: 933 User Experience Working Group Join UE WG
CWE/CAPEC Board Read meeting_minutes

Please see our Guidelines for New Content Suggestions
For other ways to get involved, contact us

However, while sufficient for
CVE, those groupings are too
rough to be used to identify and
categorize the functionality
offered within the offerings of
the code security assessment
industry. To support that type of
usage, additional fidelity and
succinctness are needed as are
additional details and
description for each of the
different nodes and groupings
such as the effects, behaviors,
and implementation details, etc.

https://cwe.mitre.org/

A.3d Weaknesses: Tools —

WWEELGESTS

MITRE: CWE Top 25 1/2

2022 CWE Top 25 Most Dangerous Software Weaknesses
Introduction

Welcome to the 2022 Common Weakness Enumeration (CWE™) Top 25 Most Dangerous Software Weaknesses list (CWE™ Top 25). This list demonstrates the currently most common and impactful
software weaknesses. Often easy to find and exploit, these can lead to exploitable vulnerabilities that allow adversaries to completely take over a system, steal data, or prevent applications from
working.

Many professionals who deal with software will find the CWE Top 25 a practical and convenient resource to help mitigate risk. This may include software architects, designers, developers, testers,
users, project managers, security researchers, educators, and contributors to standards developing organizations (SDOs).

To create the list, the CWE Team leveraged Common Vulnerabilities and Exposures (CVE®) data found within the National Institute of Standards and Technology (NIST) National Vulnerability
Database (NVD) and the Common Vulnerability Scoring System (CVSS) scores associated with each CVE Record, including a focus on CVE Records from the Cybersecurity and Infrastructure Security
Agency (CISA) Known Exploited Vulnerabilities (KEV)_Catalog. A formula was applied to the data to score each weakness based on prevalence and severity.

The dataset analyzed to calculate the 2022 Top 25 contained a total of 37,899 CVE Records from the previous two calendar years.

Table of Contents

Introduction
The CWE Top 25
Analysis and Comment

o Key Points
o General Insight
Methodology Overview
The CWE Top 25 with Scoring_Metrics
Weaknesses On the Cusp
Remapping_Task
o Significant Changes to the Remapping_Task in 2022
o Remapping_the CISA KEV Catalog
o Limitations of the Remapping Task
Problematic CWEs used in Mappings
Trends Year-over-Year: 2019 to 2022 Lists
Opportunities for the Future of the Top 25
Supplementary Details - Methodology, Replication, Improving Mappings, Future
Acknowledgments
Archive

A.3d Weaknesses: Tools
MITRE: CWE Top 25 2/2

Rank
Rank 1D Name Score Clglfl‘:lt Ch‘?;lge
(CVEs) 202'1
1 CWE-787 || Out-of-bounds Write 64.20 62 0
2 CWE-79 | Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting") 45.97 2 0
3 CWE-89 | Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') 22.11 7 +3 A
4 CWE-20 |Improper Input Validation 20.63 20 0 The list of the
5 CWE-125 ||Out-of-bounds Read 17.67 1 -2 v .
6 CWE-78 | Improper Neutralization of Special Elements used in an 05 Command ('0S Command Injection")|| 17.53 32 -1 v Weaknesses n the 2022
7 | cwe-416 [[Use After Free 15.50 || 28 0 CWE Top 25, including
| 8 | cwE-22 |Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal') | 1408 | 19 || o | the overall score of each.
9 CWE-352 |(|Cross-Site Request Forgery (CSRF) 11.53 1 0
10 CWE-434 ||Unrestricted Upload of File with Dangerous Type 9.56 6 0 The KEV Count (CVES)
| 11 | CWE-476 |NULL Pointer Dereference [715 || o | +4 A shows the number of
12 || CWE-502 |Deserialization of Untrusted Data 6.68 7 +1 A CVE_ZOZO/CVE_ZOZ]_
13 CWE-190 (|Integer Overflow or Wraparound 6.53 2 -1 v RECOFdS from the CISA
14 CWE-287 || Improper Authentication 6.35 4 0 .
15 || CWE-798 [Use of Hard-coded Credentials 5.66 0 +1 A KEV list that were
16 || CWE-862 |Missing Authorization 5.53 1 +2 A mapped to the given
17 CWE-77 |Improper Neutralization of Special Elements used in a Command ('Command Injection') 5.42 5 +8 A Weakness.
18 CWE-306 (|Missing Authentication for Critical Function 5.15 6 -7 v
19 CWE-119 (|Improper Restriction of Operations within the Bounds of a Memory Buffer 4.85 6 -2 v
20 CWE-276 |Incorrect Default Permissions 4.84 0 -1V
| 21 | CWE-918 |Server-Side Request Forgery (SSRF) [427 || 8 | +3 A
22 CWE-362 ||Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition") 3.57 6 +11 A
23 CWE-400 (|Uncontrolled Resource Consumption 3.56 2 +4 A
| 24 | cWE-611 |[Improper Restriction of XML External Entity Reference | 338 | o | -1 v
| 25 || CWE-94 ||]mproper Control of Generation of Code ('Code Injection’) || 3.32 || 4 || +3 A|

A.3d Weaknesses: Tools
MITRE: CVE

https://cve.mitre.org

The original concept for what would become the CVE List was presented by the co-creators of CVE, The MITRE
Corporation’s David E. Mann and Steven M. Christey, as a white paper entitled, Towards a Common Enumeration of
Vulnerabilities (PDF, 0.3MB), at the 2nd Workshop on Research with Security Vulnerability Databases on January 21-22,
1999 at Purdue University in West Lafayette, Indiana, USA.

From that original concept, a working group was formed (which would later become the initial 19-member CVE Editorial
Board), and the original 321 CVE Records were created. The CVE List was officially launched for the public in September
1999.

NVD

Go to for:
CWSS Scores
CPE Info
Search CVE List Downloads Data Feeds Update a CVE Record Request CVE IDs

TOTAL CVE Records: 196225

NOTICE: Transition to the all-new CVE website at WWW.CVE.ORG and CVE Record Format JSON are underway.

MNOTICE: Changes are coming to CVE List Content Downloads in 2023.

The mission of the CVE® Program is to identify, define, and catalog publicly disclosed cybersecurity vulnerabilities.

Nowadays (24 years later) there are about 200.000 CVE Records

https://cve.mitre.org/
https://cve.mitre.org/cve/search_cve_list.html
https://www.cve.org/Resources/General/Towards-a-Common-Enumeration-of-Vulnerabilities.pdf
https://www.cve.org/Resources/General/Towards-a-Common-Enumeration-of-Vulnerabilities.pdf
https://www.cve.org/ResourcesSupport/Glossary?activeTerm=glossaryCVEList

A.3d Weaknesses: Tools
MITRE:

https://cve.mitre.org/cve/search cve list.html

CVE Search

Search Results

|There are 22 CVE Records that match your search.

MName
CVE-2022-33915

CVE-2022-29615
CVE-2022-24818

CVE-2022-23848
CVE-2022-23307
CVE-2022-23305

CVE-2022-23302

CVE-2022-0070

CVE-2021-45105

CVE-2021-45046

CVE-2021-44832

CVE-2021-44530
CVE-2021-44228

CVE-2021-4125
CVE-2021-4104

CVE-2021-3100
CVE-2020-9493
CVE-2020-9488
CVE-2019-3826
CVE-2019-17571

CVE-2019-17531

CVE-2017-5645

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=log4j

Description

Versions of the Amazon AWS Apache Log4j hotpatch package before log4j-cve-2021-44228-hotpatch-1.2.5 are affected by a race condition that could lead to a local privilege escalation. This Hotpatch package is not a replacement for updating to a log4j version that mitigates CVE-2021-44228 or
CVE-2021-45046; it provides a temporary mitigation to CVE-2021-44228 by hotpatching the local Java virtual machines. To do so, it iterates through all running Java processes, performs several checks, and executes the Java virtual machine with the same permissions and capabilities as the running
process to load the hotpatch. A local user could cause the hotpatch script to execute a binary with elevated privileges by running a custom java process that performs exac() of an SUID binary after the hotpatch has observed the process path and before it has observed its effective user ID.

SAP NetWeaver Developer Studio (NWDS) - version 7.50, is based on Eclipse, which contains the logging framework log4] in version 1.x. The application’s confidentiality and integrity could have a low impact due to the vulnerabilities associated with version 1.x.

GeoTools is an open source Java library that provides tools for geospatial data. The GeoTools library has a number of data sources that can perform unchecked IJNDI lookups, which in turn can be used to perform class deserialization and result in arbitrary code execution. Similar to the Log4] case,
the vulnerability can be triggerad if the JNDI names are user-provided, but requires admin-level login to be triggered. The lookups are now restricted in GeoTools 26.4, GeoTools 25.6, and GeoTools 24.6. Users unable to upgrade should ensure that any downstream application should not allow usage
of remotely provided JNDI strings.

In Alluxio before 2.7.3, the logserver does not validate the input stream. NOTE: this is not the same as the CVE-2021-44228 Log4]j vulnerability.
CVE-2020-9493 identified a deserialization issue that was present in Apache Chainsaw. Prior to Chainsaw V2.0 Chainsaw was a component of Apache Log4j 1.2.x where the same issus exists.

By design, the JDBCAppender in Log4j 1.2.x accepts an SQL statement as a configuration parameter where the values to be inserted are converters from PatternLayout. The message converter, %m, is likely to always be included. This allows attackers to manipulate the SQL by entering crafted
strings into input fields or headers of an application that are logged allowing unintended SQL queries to be executed. Note this issue only affects Log4j 1.x when specifically configured to use the JDBCAppender, which is not the default. Beginning in version 2.0-betag, the JDBCAppender was re-
introduced with proper support for parameterized SQL queries and further customization over the columns written to in logs. Apache Log4j 1.2 reached end of life in August 2015. Users should upgrade to Log4j 2 as it addresses numerous other issues from the previous versions.

IMSSink in all wersions of Log4j 1.x is vulnerable to deserialization of untrusted data when the attacker has write access to the Log4j configuration or if the configuration references an LDAP service the attacker has access to. The attacker can provide a TopicConnectionFactoryBindingName
configuration causing JMSSink to perform JMNDI requests that result in remote code execution in a similar fashion to CVE-2021-4104. Note this issue only affects Log4j 1.x when specifically configured to use JMSSink, which is not the default. Apache Log4] 1.2 reached end of life in August 2015. Users
should upgrade to Log4j 2 as it addresses numerous other issuss from the previous versions.

Incomplete fix for CVE-2021-3100. The Apache Log4] hotpatch package starting with log4j-cve-2021-44228-hotpatch-1.1-16 will now explicitly mimic the Linux capabilities and cgroups of the target Java process that the hotpatch is applied to.

Apache Log4j2 versions 2.0-alphal through 2.16.0 (excluding 2.12.3 and 2.3.1) did not protect from uncontrolled recursion from self-referential lookups. This allows an attacker with control over Thread Context Map data to cause a denial of service when a crafted string is interpreted. This issue was
fixed in Log4j 2.17.0, 2.12.3, and 2.3.1.

It was found that the fix to address CVE-2021-44228 in Apache Log4j 2.15.0 was incomplete in certain non-default configurations. This could allows attackers with control over Thread Context Map (MDC) input data when the logging configuration uses a non-default Pattern Layout with either a
Context Lookup (for example, $3{ctx:loginId}) or a Thread Context Map pattern (26X, %amdc, or %MDC) to craft malicious input data using 2 JNDI Lookup pattern resulting in an information leak and remote code execution in some environments and local code execution in all environments. Log4]
2.16.0 (Java 8) and 2.12.2 (Java 7) fix this issue by removing support for message lookup patterns and disabling JNDI functionality by default.

Apache Log4j2 versions 2.0-beta? through 2.17.0 (excluding security fix releases 2.3.2 and 2.12.4) are vulnerable to a remote code execution (RCE) attack when a configuration uses a JDBC Appender with a JNDI LDAP data source URI when an attacker has control of the target LDAP server. This
issue is fixed by limiting JNDI data source names to the java protocol in Log4j2 versions 2.17.1, 2.12.4, and 2.3.2.

An injection vulnerability exists in a third-party library used in UniFi Network Version 6.5.53 and earlier (Log4] CVE-2021-44228) allows a malicious actor to control the application.

Apache Log4j2 2.0-betad through 2.15.0 {excluding security releases 2.12.2, 2.12.3, and 2.3.1) JNDI features used in configuration, log messages, and parameters do not protect against attacker controlled LDAP and other JNDI related endpoints. An attacker who can control log messages or log
message parameters can execute arbitrary code loaded from LDAP servers when message lookup substitution is enabled. From log4j 2.15.0, this behavior has been disabled by default. From version 2.16.0 {along with 2.12.2, 2.12.3, and 2.3.1), this functionality has been completely removed. Note
that this vulnerability is specific to log4j-core and does not affect log4net, log4cxx, or other Apache Logging Services projects.

It was found that the original fix for log4j CVE-2021-44228 and CVE-2021-45046 in the OpenShift metering hive containers was incomplete, as not all IndiLookup.class files were removed. This CVE only applies to the OpenShift Metering hive container images, shipped in OpenShift 4.8, 4.7 and 4.6.

JMSAppender in Log4j 1.2 is vulnerable to deserialization of untrusted data when the attacker has write access to the Log4j configuration. The attacker can provide TopicBindingMame and TopicConnectionFactoryBindingMame configurations causing JMSAppender to perform JNDI requests that result
in remote code execution in a similar fashion to CVE-2021-44228. Note this issue only affects Log4j 1.2 when specifically configured to use JMSAppender, which is not the default. Apache Log4j 1.2 reached end of life in August 2015. Users should upgrade to Log4j 2 as it addresses numerous other
issues from the previous versions.

The Apache Log4j hotpatch package before log4j-cve-2021-44228-hotpatch-1.1-13 didn&£8217;t mimic the permissions of the VM being patched, allowing it to escalate privileges.

A deserialization flaw was found in Apache Chainsaw versions prior to 2.1.0 which could lead to malicious code execution.

Improper validation of certificate with host mismatch in Apache Log4j SMTP appender. This could allow an SMTPS connection to be intercepted by a man-in-the-middle attack which could leak any log messages sent through that appender. Fixed in Apache Log4j 2.12.3 and 2.13.1

A stored, DOM based, cross-site scripting (XSS) flaw was found in Prometheus before version 2.7.1. An attacker could exploit this by convincing an authenticated user to visit a crafted URL on a Prometheus server, allowing for the execution and persistent storage of arbitrary scripts.

Included in Log4] 1.2 is a SocketServer class that is vulnerable to deserialization of untrusted data which can be exploited to remotely execute arbitrary code when combined with a deserialization gadget when listening to untrusted network: traffic for log data. This affects Log4j versions up to 1.2 up
to 1.2.17.

A Polymorphic Typing issue was discovered in FasterXML jackson-databind 2.0.0 through 2.9.10. When Default Typing is enabled (either globally or for a specific property) for an externally exposed JS0M endpoint and the service has the apache-log4j-extra (version 1.2.x) jar in the classpath, and an
attacker can provide a JNDI service to access, it is possible to make the service execute a malicious payload.

In Apache Log4j 2.x before 2.8.2, when using the TCP socket server or UDP socket server to receive serialized log events from another application, a specially crafted binary payload can be sent that, when deserialized, can execute arbitrary code.

https://cve.mitre.org/cve/search_cve_list.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=log4j

A.3d Weaknesses: Tools
MITRE: from Cold-War era

“MITRE began in 1958, sponsored by the U.S. Air Force to
bridge across the academic research community and
industry to architect the Semi-Automatic Ground
Environment, or SAGE, a key component of Cold War-era air
defense. We were founded as a not-for-profit company to
serve as objective advisers in systems engineering to
government agencies, both military and civilian.

We are innovators—from advances in radar technology,
cyber, GPS, cancer research, and aviation collision-avoidance
systems to breakthroughs in evolving disciplines such as
vehicle autonomy, artificial intelligence, and synthetic
biology.

Moreover, as a company that doesn’t compete with
industry, we’re uniquely positioned to convene government,
industry, and academia to collaborate on big societal
challenges, from pandemic response to highway safety to
social justice.

At its core, MITRE’s story is about our people. We're proud
that more than 9,000 multi-talented and creative individuals
choose to stand with us every day, dedicating themselves to
our mission of solving problems for a safer world.”

Edt

Weaknesses

https://sage.mitre.org/
https://sage.mitre.org/

A.3d Weaknesses: Tools
MITRE: federal research

. [S 2

WWEELGESTS

(Interestingly, MITRE is not an acronym, though
some thought it stood for Massachusetts

Institute of Technology Research and
SOLVING PROBLEMS nstitute of Tec esearchand
ngineering. The name is the creation of James
FOR AMWURLD@) McCormack, an early board member, who
wanted a name that meant nothing, but
sounded evocative.)

EXPLORE WHO WE ARE

“We discover. We create. We lead.

MITRE is trusted to lead—by government, industry, and academia.
The bedrock of any trusted relationship is integrity. For more than 60 years, MITRE has proudly operated federally funded research and development centers, or
FFRDCs. We now operate six of the 42 FFRDCs in existence—a high honor.

Since our inception, MITRE has consistently addressed the most complex whole-of-nation challenges that threaten our country’s safety, security, and prosperity.
Our mission-driven teams bring technical expertise, objectivity, and an interdisciplinary approach to drive innovation and accelerate solutions in the public
interest.

Above all, MITRE is trusted to deliver data-driven results and recommendations without any conflicts of interest.”

https://www.mitre.org/our-impact/rd-centers

A.4 Proactive Design: Best Practices, Architecture, Processes

Useful Lists of Well-done Actions for Secure Implementation

=

| A.1d Secure Programming: Introduction

Proactive Design (where): safer architecture integration

]

Nowadays application Email [e
Applications
software should H SEG |
guarantee interoperability, N
that is the ability to
v O =2
communicate and share PC/Laviop
information about
| cybersecurity. l? E:A
erver/V -
] SaaS CASB “——;‘; Centralize(f Policy and Posture ;
No more SlIOS every aa “}\"‘\ Mdnag(:mel R 4
component is part of a . CWPP X/ "’ﬂ‘:;‘:’:y ':"i""’ 8 —
- - ecu na Ccs an
bigger infrastructure, s € intnifigence =} -
giving some service and PaaS T2 N\
obtaining some other &3 e !;“"GA’A‘_*‘;AVM A

back.

Users C@ Robots Eg Processes

Gartner CSMA: Cyber Security Mesh Architecture

A.4 Proactive Design: Best Practices, Architecture, Processes

Useful Lists of Well-done Actions for Secure Implementation

1. NIST CSF: National Cybersecurity Framework P ey 3 prorcr JEE resrono Y Recoven 2

(focused in How-To manage an incident)

2. ZTA: Zero Trust Architecture («Never Trust,
Always Verify»)

3. DevSecOps: Shift Left (not implementing bl Ko
Seeurity but Securing Implementation) | |

A.4a Proactive Design: Best Practice
NIST Cyber Security Framework

NIST Cyber Security Framework

Identify Protect Detect

Anomalies and

Asset Management Access Control Bvants

Busingess Awareness and
Environment Training

SRR PRIV SP SR TSk e T

Security Continuous
Monitoring

Governance Data Security

Detection Processes

Info Protection
Risk Assessment Processes and
Procedures

Risk Management Maintehanes
Strategy

Protective

Technology

The five Functions and their subcategories of NIST CSF

Recover

Recovery Planning

Improvements

Communications

The NIST Cybersecurity
Framework (CSF) is a risk-based
approach designed for businesses
to assess and manage
cybersecurity risk.

Although the framework is
published by the United States
Department of Commerce agency,
the common taxonomy of
standards, guidelines, and
practices that it provides is not
country-specific; this explains why
it is used by many governments,
businesses, and organizations
worldwide.

A.4.b Proactive Design: Best Practice

NIST Cybersecurity Framework: Functions and Categories

Function Category

Identifier FHction Identifier Cateposy
ID.AM Assei Management
1D.BE Business Environment
= ID.GV Governance

ID LEEEY ID.RA Risk Assessment
ID.RM Risk Management Strategy
1ID.SC Supply Chain Risk Management
PR.AC Identity Management and Access Control
PR.AT Awareness and Training
PR.DS Data Security

PR Protect PR.IP Information Protection Processes and Procedures
PR.MA Maintenance
PR.PT Protective Technology
DE.AE Anomalies and Events

Detect DE.CM Security Continuous Monitoring

DE.DP Detection Processes
RS.RP Response Planning
RS.CO Communications

RS Respond RS.AN Analysis
RS.MI Mitigation
RS.IM Improvements
RC.RP Recovery Planning

RC Recover RC.IM Improvementis
RC.CO Communications

A.4.c Proactive Design: Architecture
ZTA: Zero Trust Architecture

Foundation of Zero Trust

R
—_—
—
-
=
ar
—

Network / Environment

Visibility and Analytics

Automation and Orchestration

Governance

A.4.d Proactive Design: Architecture

ZTA: Evolution of Trust Models & Topologies

Years
‘90s

"00s

20s

Name
Tier Model

strict separation of
assets

Hub & Spoke
connect outlying

points to a central
"hub“_

Zero Trust

Authentication
GW Distribution

Fashion

«Circles
of Hell»

«Airline
Routes»

«Never
Trust,

Always
Verify»

Remote

No/a
Few

Some

Most

Description Trust

logical separation of
assets by boundaries in
the same physical
location (old-fashioned
Perimeter-Centric).

Outside. No

remote connections Outside
secured by VPN tunnels

(strong pub-key

cryptography) converging

at one location

(Centralized Branch

Office)

connections are granted
after careful verification
(Identity, Device, Time,
Geolocation, Security

Posture (Default Deny)

Tools

FW
IDS

VPN
SSL-VPN
VDI

RDP

PEP
(CASB,
ATP,
DLP, ...)
> SASE

Drawback

No Remote

Bottleneck
and SPoF

Distributed
network of
PoPs

A.4.e Proactive Design: Architecture

What is ZTA
)
Adaptive Policy Enforcement & Data
Real-time Protection
o @ Trusted Trusted
Identit ()
e .- Workload

9o

Devices/ 5 S =F
Endpoints D D POIICy Decision & Network
Enforcement

Untrusted

Regardless of their location
» Focusing on Protecting Data rather than access to devices, removing the assumption of perimeter trust.

» Enforcing Access Control by a Decision/Enforcement Point, based not more only on Network rules but on
dynamic Policies calculated on continuous verification

» Assuming Identity as the new front line (together with accessing device), continuously assessing it and his
behaviours.

A.4.f Proactive Design: Architecture

Pillar Model for development of ZTA -

Proactive Design

ZERO
TRUST ARCHITECTURE

MFA Smart Card
Segmentation

Conditional Access
Configuration: GPO
Filering, VPN, DDoS
Log Analysis, SIEM

AIP: Info Protection

Defender for Endpoint

Sec Ops & Response

Patching: WSUS, Intune

Identities EndPoints/Devices Network Workload

Visibility & Analytics: understanding & improving IT Environment

Automation & Orchestration: dynamic workflow management

Governance: set of rules and indicators for command & control

This model cames from CISA ZT Maturity Model

https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf

A.4.f1 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Identities -

Proactive Design

ZERO
TRUST ARCHITECTURE

©
s
© (=
ot .0
) L
© 3
£ c
) Q
< £
. 7
= »

Filering, VPN, DDoS

Conditional Access
Configuration: GPO
Log Analysis, SIEM
Sec Ops & Response
AIP: Info Protection
Defender for Endpoint

[J]
c
S
]
£
)
2
2
%
£
<
]
-
©
a

EndPoints/Devices

Identities
A\. AM

MFA ‘ IGA B pam
'QI : 25
Users * = Robots Cg Processes

A.4.f2 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: EndPoint -

Proactive Design

ZERO
TRUST ARCHITECTURE

f=
2
=
©
-
c
)]
£
bo
()]
w

MFA Smart Card
Conditional Access
Patching: WSUS, Intune
Configuration: GPO
Filering, VPN, DDoS
Log Analysis, SIEM
Sec Ops & Response
AIP: Info Protection
Defender for Endpoint

Identities EndPoints/Devices

0

Mobile/Tablet

- o]

PC/Laptop

Server/VM

A.4.f3 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Network

ZERO
TRUST ARCHITECTURE

MFA Smart Card
Conditional Access

Filering, VPN, DDoS
Segmentation

AIP: Info Protection
Defender for Endpoint

Patching: WSUS, Intune
Configuration: GPO
Log Analysis, SIEM

Sec Ops & Response

Identities EndPoints/Devices

A.4.f4 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Workload

ZERO
TRUST ARCHITECTURE

MFA Smart Card
Conditional Access

Filering, VPN, DDoS
Segmentation

AIP: Info Protection
Defender for Endpoint

Patching: WSUS, Intune
Configuration: GPO
Log Analysis, SIEM

Sec Ops & Response

Identities EndPoints/Devices

A.4.f5 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Data -

Proactive Design

ZERO
TRUST ARCHITECTURE

MFA Smart Card
Conditional Access
Patching: WSUS, Intune
Configuration: GPO
Filering, VPN, DDoS
Segmentation
Log Analysis, SIEM
Sec Ops & Response
AIP: Info Protection
Defender for Endpoint

Identities EndPoints/Devices

Data Classification

A.4.f6 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: GOV -

Proactive Design

ZERO
TRUST ARCHITECTURE

MFA Smart Card
Conditional Access
Filering, VPN, DDoS
Segmentation
AIP: Info Protection
Defender for Endpoint

Log Analysis, SIEM
Sec Ops & Response

2

3 (@]
16
) c
2 (=]
2 -
= ©
- 5
0 [
gl &
S! 6§
- (&)
o

Identities

Governance
Orchestration
Visibility

A.4.g Proactive Design: Architecture

NIST Cyber Security Framework: Category mapping for Pervasive Telemetry - -

Proactive Design

A

v

- Asset Management Risk Assessment
Identify ;

ID.AM ID.RA

Identity Management,

ol . Information Protection 8
Authentication, and Access Data Security Protective Technology
Protect Control PR DS Processes and Procedures PRPT

PRAC PR.IP

D t t Anomalies and Events Security Continuous Monitoring Detection Processes
etec DE.AE DE.CM DE.DP

Respond Miigtio

Recover

As mapped by NCCoE in the paper “Implementing a ZTA”

https://www.nccoe.nist.gov/projects/implementing-zero-trust-architecture

A.4.h Proactive Design: Architecture

ZTA: IT Functions: security & protection

Pttt Sesciafily

Liakacanter

Several tools enabling ZTA
for Hybrid Cloud.

Those could be classified on:

g . T

°
= m

al

*Infrastructure: tools for security management of the Hybrid Cloud components, its usage readiness and configuration. That is, by static
point of view, focused on the management of the service items and their status. Without direct relation to any specific connection,
interaction, activity (about 2/3 of the tools).

* Transaction: tools for security & management of any specific connection, interaction, activity amidst the Hybrid Cloud. That is, by
dynamic point of view, focused on access, about the usage of the configuration set by the infrastructure tool (about 1/3 of the tools). Often
integrated in SASE platforms and SD-WAN as well.

A.4.i Proactive Design: Architecture

ZTA: Platforms for protecting infrastructure

Pillar(s) Function Name Enforce Enabling

Identity IGA Identity Governance (SoD) Authorizations: Permissions Identity Lifecycle.

Identity CIEM Cloud Infrastructure Entitlement Roles: Entitlements Business & Application Lifecycle

Management

Identity PAM Privileged Access Management Authorizations: Privileged Privilege Administration

EndPoint CMDB Asset Mgmt Item identification Item Configuration

EndPoint MDM Mobile Device Management Patching Vulnerability Management; Change &
Configuration Mgmt

Network CNS Cloud Network Security Segregation & Segmentation Micro-Segmentation

Network DDoS Anti-DDoS Protect against obscuration Application Availability

Workload

Workload SCM SW Configuration Mgmt Config & Change Approval Workflow

Workload CSPM Cloud Security Posture Mgmt Secure Configuration Compliance

Workload CWP Cloud Workload Protection SW Mgmt Configuration Management

Workload XDR eXtended Detection & Response Threat Detection Block advanced malware, exploits and
fileless attacks

Workload IRM Integrated Risk Management Security Dashboard Security Governance by KPI

Data CKMS Cloud Key Mgmt Service Secure Key Mgmt Centralized key control in hybrid cloud

A.4.i Proactive Design: Architecture

ZTA: Platforms for Protecting Transaction =» SASE

Pillar(s) Function Name Enforce Enabling

Identity CASB Cloud Access Security Broker threats, and data leakage Access to cloud applications and

Workload identification shadow IT

EndPoint SWG Secure Web Gateway URL filtering Access to Internet

EndPoint ATP Advanced Threat Prevention Blocking threats Spreading across endpoints and nets.

EndPoint DNS-Sec | DNS Security predicting, blocking, and Access to Internet

Network tracking malicious activity

Network VPN Virtual Private Network threats, and data leakage Access to shadow IT

Network SD-WAN | SW Defined WAN intelligent unified view and Traffic Prioritization, WAN
simplified mgmt Optimization, converged backbones)

Network FWaaS FW as a Service Next Generation Rules Net Filtering

Data DLP Detecting/Blocking Access to Company Data

Exfiltration

Not all SASE vendors do implement all the listed ZTA functions

A.4f Proactive Design: Processes

SDLC and Security: DevSecOps

Secure Code Review is a process which
identifies the insecure piece of code
which may cause a potential vulnerability
in a later stage of the software
development process, ultimately leading
to an insecure application.

When a vulnerability is detected in
earlier stages of SDLC, it has less impact
than the later stages of SDLC — when the
insecure code moves to the production
environment.

In the SDLC, the secure code review
process comes under the Development
Phase, which means that when the
application is being coded by the
developers, they can do self-code review
or a security analyst can perform the
code review, or both.

T

Proactive Design

. —

= -

[\ [{ N\ 7 2
[m—— Threat Modeling Secure Code Security Host Level |
L Bisk Assessment J L& Design ReviewJ L Review J [Assessment J L Review J

SDLC Process

Software Development Life Cycle and Security

A.4f Proactive Design: Processes
DevSecOps: Shift Left Approach

Higher Competitive
Efficiency Advantage

\ r, \ 4 \, — R -

Reduce Cost Higher
Quality

Shift Left is a practice intended to find and prevent defects early in the software delivery process. The
idea is to improve quality by moving tasks to the left as early in the lifecycle as possible. Shift Left testing means
testing earlier in the software development process.

A.4g Proactive Design: Processes
DevSecOps: Shift Left Approach - -

Proactive Design

The Technology Driving Shift Left Security

DevOps organizations realized that they must also shift security left to avoid introducing more security risks than security and operations
teams can manage. This movement is known as DevSecOps, and uses a variety of tools and technologies to close the gap and enable rapid,
automated security assessment as part of the Cl/CD pipeline:

*Static Application Security Testing (SAST) is used to scan source code for known weaknesses and insecure coding practices. In DevSecOps,
this testing is typically integrated into developers’ development environments for immediate security risk feedback.

*Software Composition Analysis (SCA) analyzes software to detect known software components, such as open source and third-party
libraries, and identify any associated vulnerabilities. SCA complements SAST by finding vulnerabilities not detectable by scanning source code.
*Dynamic Application Security Testing (DAST) scans applications in runtime, prior to deployment into production environments. This enables
an outside-in approach to testing applications for exploitable conditions that were not detectable in a static state.

*Runtime Application Self-Protection (RASP) runs alongside applications in production to observe and analyze behavior and notify or block
anomalous and unauthorized actions. While this may place additional infrastructural burden on production environments, it delivers a real-
time look into potential application security risks.

*Web Application Firewalls (WAF) monitor traffic at the application level and detect potential attacks and attempts to exploit vulnerabilities.
WAFs can be configured to block certain potential attack vectors even without remediating the underlying software vulnerabilities.
*Container image scanning tools can continuously and automatically scan container images within the CI/CD pipeline and in container
registries, prior to deployment into production environments. This enables identification of vulnerabilities or unsafe components, and
provides remediation or mitigation guidance directly to developers and DevOps teams.

*Cloud Security Posture Management (CSPM) solutions identify misconfigurations in cloud infrastructure that could leave potential risks and
attack vectors unchecked. CSPM solutions can recommend or automatically apply security best practices based on an organization’s internal
policies or third-party security standards.

https://www.aquasec.com/cloud-native-academy/supply-chain-security/sast-security/
https://www.aquasec.com/cloud-native-academy/supply-chain-security/software-composition-analysis-sca/
https://www.aquasec.com/cloud-native-academy/application-security/application-security/
https://aquasecstaging.wpengine.com/products/cspm/

A.5 Code Vulnerability: Security Bugs

Definition

A.le Secure Programming: Introduction

Defensive Coding (how): developing without security bugs

914 ,
06w Onkom >w ; {/-17-0 7037 vyy 015
/000 " s\v‘rﬂ = aan il 9.087 §YC 095 <ok
1370, (035 HMP ~me iﬁm/:ﬂ) 74/5725055(-0)
03y PRO > 2. 13oya6yis
= Covik 3.1306765«/::} ey
S G-t = 033 M : ‘T‘J Jeob | s
{m foey Tm ot - {*
”"‘ -SI;&r‘f'-J Cosu\g (Sn\c. c—‘\ccl)
IS 25 lovtedi D wity Ao\j-er Test.
1S4y | @&\ *70 ?qv\g‘ 7

@o'ﬁbu\ (‘t\q\:\

rhF /e QAF'\\’S\' Q:m case o-r Bu&l Lcin1 {ounl.

oo Ladd fprem .

The first bug (Source: Naval Historical
Center Online Library Photograph)

The causes of security breaches are varied, but
many of them owe to a defect (or bug) or design
flaw in a targeted computer system's software.

After finding a moth inside the Harvard Mark Il
computer on September 9th, 1947 at 3:45 p.m.,
Grace Murray Hopper logged the first computer
bug in her log book.

She wrote the time and the sentence: “First actual
case of bug being found”.

Nowadays, the term “bug” in computer science is
not taken literally, of course. We use it to talk
about a flaw or failure in a computer program that
causes it to produce an unexpected result or
crash.

Defensive Coding

Buffers contain
a certain
amount of data
that limits it to
hold limited
data for a
limited time as
multiple

A.5 Code Vulnerability: Buffer Overflow

Definition

Buffers contain a certain amount of
data that limits it to hold limited data Buffer overflow example
for a limited time as multiple
application uses this mechanism of { Buffer (8 bytes)
the buffer. Resultantly a situation ,
arrives when further data is pushed [U][S][E][R][N][A][M][E][1][2
into a buffer, such a condition refers ’
0 1 2 5 4 5 6 7/ 8 Q

to a term called a buffer overflow.

‘ Overflow

It is a flaw that arises when software that writes data to a buffer surpasses the buffer capacity, resulting in
overwriting of neighboring memory locations. That is, too much information is transmitted to a repository that
does not have enough space, and this information is gradually replaced by neighboring repository data.

For example, a buffer for login data can be configured to require an 8-byte username and password to be
entered, so if a transaction contains 10 bytes (i.e., 2 bytes more than expected) input, the program can write
down excess data over the buffer limit.

A.5 Code Vulnerability: Insecure Input

Code Injection

Server
ﬂpl.‘lﬁ'ﬂbﬁ“ﬂ.ﬁﬂl‘l’l Defensive Coding
| Code injection is a type of attack that allows
Endpoint: | . . o .
customeronboarding an attacker to inject malicious code into an

S

application through a user input field, which
is then executed on the fly.

4

A

Hacker
'I Calling Url: curl https:/ fwww.bigcorp.com/
customercnboarding?name="; [malicious _coeda]/| 2 sval() runs the o . o
malicious code getting Code injection vulnerabilities are rather rare,

dccess to sensitive data.

but when they do pop up, it is often a case
where the developer has attempted to
generate code dynamically.

® ® & hitps:f fwww.bigeorp.com/

— Preventing code injection attacks usually
T eeemm— | comes down to reconsidering the need to
— e e e B — dynamically execute code, especially where
S user input is involved.

3 Browser downloads the page
including sensitive infarmation.

Example of Code Injection

A.5 Code Vulnerability: Insecure Input

von Neumann vs Harward Architecture

Tricking an application to treat provided data as code

von Neumann vs Harward

Architettura

Von Neumann

BbitBus ~ Program
& Data

c PU Memory

Program & Data together > Metadata

Architettura

Program
Memory

Program in a place, Data in another = Limited
interactions

A.5b Code Vulnerability: Buffer Overflow, Insecure Input

Secure Software Alliance

Defensive Coding
SSA Goals Context Threats
°Creat'|on of SOftW‘_”‘re §ecur|ty awareness at all * Functions and environment * Functional threats
levels in the organization * Application assets « Architectural threats

+ Security requirements
+ Security assumptions

- architecture inventory
- threat library
+ Mitigations

eStimulate activities that contribute to increase

software security.
—

*Trustee of the (open source) Secure Software ARCHITECTURE

Framework

*Develop a secure software certificate model for
software based upon a positive advice from an
inspection-organization accredited by the SSA.

| .) | Verification
*Follow and contribute to (internationa
. ee an . () * Verification methode tegTING CODING
initiatives in the area of secure software - code review timslementation
development - penetration test P
- vulnerability scan + Secure coding principles

. .) - fuzzin « Secure coding standards

*Work together with other private and public] abusegtests s Codéaudit .

organizations with similar interests. + Verification process

	Slide 1: Secure Programming Lab A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomunicazioni A. Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

