
Secure Programming
A.A. 2022/2023

Corso di Laurea in Ingegneria delle Telecomnicazioni

B. Build Security In

Paolo Ottolino

Politecnico di Bari

Secure Programming Lab: Course Program

A. Intro Secure Programming: «Who-What-Why-When-Where-How»

B. Building Security in: Buffer Overflow, UAF, Command Inection

C. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration

D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

E. Security & Protection: Risks, Attacks. CIA -> AAA (AuthN, AuthZ, Accounting) -> IAM, SIEM, SOAR

F. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps

G. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR)

H. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins

I. Architecture and Processes 3: OWASP DSOMM, NIST SSDF

J. Operating Environment: Kali Linux on WSL

K. Python: Powerful Language for easy creation of hacking tools

L. SAST: Endogen, Exogen factors, SAST (cfr. SourceCodeAnalysisTools), SonarQube

M. Exercises: SecureFlag

Build Security In: Agenda

1. Security In: What is?

2. BOF: Buffer OverFlow (pointer concepts)

3. UAF: Use After Free

4. Unsecured Input: Command Injection (provide data as code)

5. Secure Coding Practice: SEI (Software Engineering Institute)

B.1 Security In: What is?
The 15 biggest data breaches of the 21st century

https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html

Company Date Accounts Details

1 Yahoo Augt 2013 3 billions Incident announced in 2016. Reduce prize in Verizon acquisition

2 Aadhaar Jan 2018 1.1 billion Indian citizens’ identity/biometric information exposed

3 Alibaba Nov 2019 1.1 billion Pieces of user data (including usernames and mobile numbers)

4 LinkedIn June 2021 700 millions User data posted in on a dark web forum

5 Sina Weibo Mar 2020 538 millions Data (real, site, gender, location, mobile) of user of the Social Media

6 Facebook Apr 2019 533 millions 2 datasets exposed on public Internet (HIBP: HaveIBeenPwned)

7 Marriott Sep 2018 500 millions Exposure of sensitive details about customers

8 Yahoo 2014 500 millions User data (names, email addresses, phone numbers, hashed passwords, and dates of birth)

9 Adult Friend Finder Oct 2016 412.2 millions 20 years’ worth of user data across six databases

10 MySpace 2013 360 millions accounts leaked onto LeakedSource.com and put up for sale on dark web market The Real Deal

11 NetEase Oct 2015 235 millions email addresses and plaintext passwords of the email accounts sold by dark web

12 Experian (Court Ventures) Oct 2013 200 million Vietnamese man (Hieu Minh Ngo) posing as a private investigator of Singapore got access to DB (about 2$ million
revenue)

13 LinkedIn June 2012 165 millions Revealed only in 2016. Perpetrated by the same hacker of MySpace

14 Dubsmash Dec 2018 162 millions Personal data (email, username, PBKDF2 password hashes, birth etc.) of the video messaging service put up for
sale on the Dream Market dark web market

15 Adobe Oct 2013 153 millions encrypted customer credit card records and login data

https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-century.html

B.1b Security In: What is?
Vulnerabilities: Security-relevant Defects

The causes of security breaches are

varied, but many of them owe to a
defect (or bug) or design flaw in a
targeted computer system's
software.

• Software defect (bug) or design
flaw can be exploited to affect an
undesired behavior

B.1b Security In: What is?
Defects and Vulnerabilities

The use of software is growing ➔ So: more bugs and flaws

Software is large (lines of code)

• Chevy volt: 10 million

• Boeing 787: 14 million

• F35 fighter Jet: 24 million

• Windows: 50 million

• Mac OS: 80 million

• Google: 2 billion

B.1c Security In: What is?
Quiz 1

Program testing can show that a program has no bugs.

A. True

B. False

B.1d Security In: What is?
Quiz 1

Program testing can show that a program has no bugs.

A. True

B. False

“Program testing can be used to show the presence of bugs, but

never to show their absence!”

Edsger Dijkstra

B.1e Security In: What is?
Considering Correctness

• All software is buggy, isn’t it? Haven’t we been
dealing with this for a long time?
• Removing bugs is expensive

• A normal user never sees most bugs, or figures out
how to work around them

• Therefore, companies fix the most likely bugs, to
save money

B.1f Security In: What is?
Exploitable Bugs

Many kinds of exploits have been developed over time, with
technical names like:
• Buffer overflow
• Use after free
• Command injection
• SQL injection
• Privilege escalation
• Cross-site scripting
• Path traversal
• …

B.1g Security In: What is?
Agenda

• The basics of threat modeling.

• Three basic kinds of exploits:

1. Buffer Overflows → Type-safe Programming Languages

2. Use After Free → Type-safe Programming Languages

3. Command injection → Input Validation.

B.2 Buffer Overflow: pointer concepts
outside its allotted bounds

A buffer overflow describes a family of
possible exploits of a vulnerability in
which a program may incorrectly
access a buffer outside its allotted
bounds.
• A buffer overwrite occurs when the
out-of-bounds access is a write.
• A buffer overread occurs when the
out-of-bounds access is a read.

B.2b Buffer Overflow: pointer concepts
Example: Out-of-Bounds in C

Output:

The value of z changed

from 20 to 21. Why?

B.2c Buffer Overflow: pointer concepts
Example: Out-of-Bounds in C

Output:

• array y has length 10
• but the second argument of
incr_arr is 11, which is one
more than it should be.
• As a result, line 5 will be allowed
to read/write past the end of the
array.

B.2d Buffer Overflow: pointer concepts
Example: Out-of-Bounds in type-safe language

Consider the same program, written in
Type-safe language

• Exception: Invalid_argument
"index out of bounds".

• type-safe language detects the
attempt to write one past the end of
the array and signals by throwing an
exception.

B.2e Buffer Overflow: pointer concepts
Exploiting a Vulnerability

int y[10]={1,1,1,1,1,1,1,1,1,1};

int z = 20;

a.out

a.out 11

If an attacker can force the argument to be 11 (or more), then he can trigger
the bug.

B.2f Buffer Overflow: pointer concepts
Quiz 2

If you declare an array as int a[100]; in C and you
try to write 5 to a[i], where i happens to be 200,
what will happen?

A. Nothing
B. The C compiler will give you an error and won’t
compile
C. There will always be a runtime error
D. Whatever is at a[200] will be overwritten

B.2g Buffer Overflow: pointer concepts
Quiz 2

If you declare an array as int a[100]; in C and you
try to write 5 to a[i], where i happens to be 200,
what will happen?

A. Nothing
B. The C compiler will give you an error and won’t
compile
C. There will always be a runtime error
D. Whatever is at a[200] will be overwritten

B.2h Buffer Overflow: pointer concepts
Buffer Overread

What Can Exploitation Achieve? Heartbleed

• Heartbleed is a bug in the popular, open-
source OpenSSL codebase, part of the HTTPS
protocol.

• The attacker can read the memory beyond
the buffer, which could contain secret keys or
passwords, perhaps provided by previous
clients

B.2i Buffer Overflow: pointer concepts
Buffer Overwrite

What Can Exploitation Achieve? Morris Worm

B.2j Buffer Overflow: pointer concepts
Buffer Overwrite

Morris Worm

• For C/C++ programs: A buffer with the password could be a
local variable

• Therefore: The attacker’s input (includes machine
instructions) is too long, and overruns the buffer

• The overrun rewrites the return address to point into the
buffer, at the machine instructions

• When the call “returns” it executes the attacker’s code

B.2j Buffer Overflow: pointer concepts
Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

A. Floating point addition

B. Indexing of arrays

C. Dereferencing a pointer

D. Pointer arithmetic

B.2k Buffer Overflow: pointer concepts
Quiz 3

Which kinds of operation is most likely to not lead to a
buffer overflow in C?

A. Floating point addition

B. Indexing of arrays

C. Dereferencing a pointer

D. Pointer arithmetic

B.2l Buffer Overflow: pointer concepts
Causes

B.3 User After Free
Definition (bug, no exploit)

• Use-after-free referencing stale data…

`char * ptr = malloc(SIZE);
…
if (error){
free(ptr);
}
…
printf("%s", ptr);

If this code is executed and if the error
branch is taken, an undefined behavior is
likely to occur since ptr points to a non-valid
memory area

B.3 User After Free
Definition (bug, no exploit)

• Use-after-free can cause access to sensitive data…

B.3 User After Free
Definition (bug, no exploit)

• Use-after-free can cause stale data to be treated as code

C and C++ programs expect the programmer to ensure this never happens!

B.3 User After Free
Definition (bug, no exploit)

• Use-after-free relies
on the ability to keep
using freed memory
once it’s been
reallocated

• Buffer overflows rely
on the ability to read
or write outside the
bounds of a buffer

C and C++ programs expect the programmer to ensure this never happens!

B.3b User After Free
Type-safe language

Defense: Type-safe Languages

Type-safe Languages (like Python, Java, etc.) ensure buffer

sizes are respected

• Compiler inserts checks at reads/writes. Such checks can halt

the program. But will prevent a bug from being exploited

• Garbage collection avoids the use-after-free bugs. No object will

be freed if it could be used again in the future.

B.3c User After Free
Type-safe Language

Defense: Type-safe Languages

Type safety ensures two useful properties that preclude buffer overflows and
other memory corruption-based exploits.
• Preservation: memory in use by the program at a particular type T always has
that type T.
• Progress: values deemed to have type T will be usable by code expecting to
receive a value of that type
• To ensure preservation and progress implies that only non-freed buffers can
only be accessed within their allotted bounds, precluding buffer overflows.
• Overwrites breaks preservation
• Overreads could break progress
• Uses-after-free could break both

B.3d User After Free
Type-safe Languages

Type safety

Informally, a type-safe language is one for which:

• There is a clearly specified notion of type correctness.

• Type correct programs are free of “runtime type errors”.

B.3e User After Free
Type-safe Languages

Type safety

Type safety is a matter of coherence between the static and dynamic
semantics.

• The static semantics makes predictions about the execution
behavior.

• The dynamic semantics must comply with those predictions.

B.3e2 User After Free
Type-safe Languages

Type safety

Examples
1. if the type system tracks sizes of arrays, then out-of-bounds subscript is a run-time type

error.
• The type system ensures that access is within allowable limits.

• If the run-time model exceeds these bounds, you have a run-time type error.

2. Similarly, if the type system tracks value ranges, then division by zero or arithmetic
overflow is a run-time type error.

B.3f User After Free
Use After Free (bug, no exploit)

Type-safe Languages: Costs

• Performance
Array Bounds Checks and Garbage Collection add overhead to a
➔ program’s running time.

• Expressiveness
C casts between different sorts of objects, e.g., a struct and an array.
This sort of operation -- cast from integer to pointer -- is not permitted in a type
safe language.
➔ Need casting in System programming

B.3g User After Free
Quiz 4

Applications developed in the programming languages __________
are susceptible to buffer overflows and uses-after-free.

A. Ruby, Python

B. Java, Pascal

C. C, C++

D. Rust, C#

B.3h User After Free
Quiz 4

Applications developed in the programming languages __________
are susceptible to buffer overflows and uses-after-free.

A. Ruby, Python

B. Java, Pascal

C. C, C++

D. Rust, C#

B.3i User After Free
Internet Explorer: many UAF

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

Use-after-free is still a common
bug class because the task of
manually identifying them,
especially in large and complex
codebases is a challenge.

The reason is that their
existence is a result of the
combined actions from
different parts of an application

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

B.3i2 User After Free
Internet Explorer: page rendering → DOM

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

DOM: The Document Object
Model (DOM) is the data
representation of the objects that
comprise the structure and
content of a document on the
web. This guide will introduce the
DOM, look at how the DOM
represents an HTML document in
memory and how to use APIs to
create web content and
applications.

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/
https://developer.mozilla.org/en-US/docs/Glossary/HTML

B.3i2 User After Free
Internet Explorer: DOM → JS

https://www.tutorialstonight.com/js/js-dom-access-methods

Nodes in HTML DOM are accessed by using javascript.

There are many DOM access methods using which you can access HTML elements:
• getElementById(): returns an element whose id is matched with the passed id value within the method;

• getElementsByClassName(): returns an array of all the child elements which have given class name(s);

• getElementsByTagName(): returns an array of all HTML elements with the given tag name in form of an array
• querySelector(): selects the 1st element on the basic of a valid CSS selectors string
• querySelectorAll(): selects all the element matching the string and return as a collection

https://www.tutorialstonight.com/js/js-dom-access-methods

B.3i3 User After Free
Internet Explorer: JS → JIT Compiler

https://tooslowexception.com/net-jit-compiler-is-not-type-safe/

https://www.geeksforgeeks.org/what-is-just-in-time-jit-compiler-in-dot-net/

CIL: Common Intermediate Language

JIT (Just in Time) Compiler is not Type-Safe ➔ UAF

https://tooslowexception.com/net-jit-compiler-is-not-type-safe/
https://www.geeksforgeeks.org/what-is-just-in-time-jit-compiler-in-dot-net/

B.3i4 User After Free
Internet Explorer: many UAF

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

Two common reasons that lead to dangling pointers are:

•Not updating a pointer value once the object it points to is freed.

•Not updating the reference count of a currently in-use object. This results in the object currently in-use to
be prematurely freed.

Typically, exploits that leverage UAFs will attempt to reallocate the memory previously allocated to the freed
object. This causes the dangling pointer to point to an attacker-controlled data. The application’s execution
flow is then controlled when an attacker-controlled data obtained via the dangling pointer is used within the
application.

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

B.3i4 User After Free
Internet Explorer: many UAF

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

Example 1: CVE-2012-4969 (IE CMshtmlEd UAF)

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

B.3i5 User After Free
Internet Explorer: many UAF

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

Example 2: CVE-2012-4792 (IE CButton UAF)

https://securityintelligence.com/use-after-frees-that-pointer-may-be-pointing-to-something-bad/

B.3j User After Free
Adobe Flash Player

https://www.blog.google/products/chrome/saying-goodbye-flash-chrome/

The classic Flash exploit for many past years
was mainly about corruption of the length field
of Vector objects.

The length field is located at the beginning of
the Vector buffer.

For instance, a heap overflow exploit sprays
Vectors and creates memory holes by freeing
some Vectors.

Vulnerable buffer is created to occupy one of
the memory holes, corrupting the length field
of a Vector object by triggering an overflow.

https://www.blog.google/products/chrome/saying-goodbye-flash-chrome/

B.3k User After Free
Adobe Flash Player: Exploiting CVE-2015-0311

https://www.coresecurity.com/core-labs/articles/exploiting-cve-2015-0311-a-use-after-free-in-adobe-flash-player

https://www.coresecurity.com/core-labs/articles/exploiting-cve-2015-0311-a-use-after-free-in-adobe-flash-player

B.3l UAF vs BOF
Trusting the Programmer?

• Buffer overflows rely on the ability to

read or write outside the bounds of a

buffer

• Use-after-free relies on the ability to

keep using freed memory once it’s been

reallocated

• C and C++ programs expect the

programmer to ensure this never

happens

• But humans (regularly) make mistakes!
International Obfuscated C Code Contest: https://www.ioccc.org/

https://www.ioccc.org/

B.4 Command Injection
Out of Type Attack

Type safety will not rule out all forms of attack

Command Injection: (also known as shell injection) is a security

vulnerability that allows an attacker to execute arbitrary operating

system (OS) commands on the server that is running an

application.

B.4b Unsecured Input: Provided data as Code
Attacker tricks an application to treat attacker-provided data as code

This feature appears in many exploits too

• SQL injection treats data as database queries

• Cross-site scripting treats data as Javascript commands

• Command injection treats data as operating system commands

• Etc.

B.4c Unsecured Input: Provided data as Code
von Neumann vs Harward Architecture

Tricking an application to treat provided data as code

Architettura di von Neumann vs Architettura di Harward

B.4d Unsecured Input: Provided data as Code
Command Injection

What’s wrong in this code?

Ruby code
if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

end

call cat command on given argument

system(“cat ”+ARGV[0])

exit 0

B.4e Unsecured Input: Provided data as Code
Possible Interactions

> cat hello.txt

Hello world!

> ls

catwrapper.rb

hello.txt

> ruby catwrapper.rb hello.txt

Hello world!

> ruby catwrapper.rb catwrapper.rb

if ARGV.length < 1 then

puts "required argument: textfile path”

…

> ruby catwrapper.rb “hello.txt; rm hello.txt”

Hello world!

> ls

catwrapper.rb

B.4e Unsecured Input: Provided data as Code
What Happened

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

end

call cat command on given argument

system(“cat ”+ARGV[0])

exit 0

system() interpreted the string as having two commands, and executed them both

B.4f Unsecured Input: Provided data as Code
If the script were part of a web service…

Input is untrusted — could be anything
But the requestors should only be able to read (see) the contents of the files, not to write (delete)
Current code is too powerful

The code is vulnerable to
Command Injection

To fix it
Input Validation

https://www.owasp.org/index.php/Command_Injection

https://www.owasp.org/index.php/Command_Injection

B.4g Unsecured Input: Provided data as Code
Input Validation

Making input trustworthy

• Sanitize it by modifying it or using it it in such a way that the result is correctly formed by
construction

• Check it has the expected form, and reject it if not

https://www.owasp.org/index.php/Command_Injection

https://www.owasp.org/index.php/Command_Injection

B.4h Unsecured Input: Defenses
Input treatment Options

break input treatment options down in a number of types:

•Checking Whitelisting: reject strings that seems invalid (safer than fix it). ➔ Principle of “Fail Safe” by default

•Sanitization Escaping: Replace problematic characters with safe ones.

•Checking Blacklisting: Reject strings with possibly bad chars.

•Sanitization Blacklisting: Delete the characters you don’t want.

B.4h1 Unsecured Input: Defenses
Checking: Whitelisting

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

files = Dir.entries(".").reject{|f| File.directory?(f)}

if not (files.member? ARGV[0]) then

puts "illegal argument"

exit 1

else

call cat command on given argument

system(“cat ”+ARGV[0])

exit 0

end

reject inputs that do not mention a
legal file name

Check the user input to recognize as safe (e.g. proper filename → intensive description)

B.4h2 Unsecured Input: Defenses
Sanitization: Escaping

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

def escape_chars(string)

pat = /(\'|\"|\.|*|\/|\-|\\|;|\||\s)/

string.gsub(pat){|match|"\\" + match}

End

call cat command on given argument

system(“cat ”+ARGV[0])

exit 0

end

Escape occurrences of ‘, “”, ; etc. in
input string

ARGV “hello.txt; rm hello.txt”
Becomes
“hello.txt rm hello.txt”
➔ System response
cat: hello.txt rm hello.txt: No such file
or directory

Replace problematic chars with safer ones (→ extensive description): ’ → \’ → \; -→ \- \→ \\

B.4h3 Unsecured Input: Defenses
Checking: Blacklisting

if ARGV.length < 1 then

puts "required argument: textfile path"

exit 1

if ARGV[0] =~ /;/ then

puts "illegal argument"

exit 1

call cat command on given argument

system(“cat ”+ARGV[0])

exit 0

end

Reject input strings with: ;

Reject strings with possibly bad chars (→ extensive description): ’ ; --

B.4h4 Unsecured Input: Defenses
Sanitization: Blacklisting

if ARGV.length < 1 then

puts "required argument: textfile
path"

exit 1

call cat command on given
argument

system(“cat +ARGV[0].tr(“;”,“”))

exit 0

end

Delete occurencies of ; from the
input string

Delete unwanted chars from the input string (→ extensive description): ’ ; --

B.4i Unsecured Input: Defenses
Validation Challenges

Summary of validation actions and their challenges:

Defense Summary Description Challenge

Checking
Whitelisting

reject strings that seems
invalid (safer than fix it).

Intensive Cannot always identify whitelist cheaply or completely
• May be expensive to compute at runtime
• May be hard to describe (e.g., “all possible proper
names”)

Sanitization
Escaping

Replace problematic
characters with safe ones

Extensive Cannot always delete or sanitize problematic
characters
• You may want dangerous chars, e.g., “Peter
O’Connor”
• How do you know if/when the characters are bad?
• Hard to think of all of the possible characters to
eliminate

Checking
Blacklisting

Reject strings with possibly
bad chars

Extensive

Sanitization
Blacklisting

Delete the characters you
don’t want

Extensive

B.4j Defenses
Risk treatment Options

break risk treatment options down in a number of types:

•Avoid: Risk avoidance is actually pretty self-explanatory. If a risk is deemed too high, then you simply avoid
the activity that creates the risk. For instance, if flying in an airplane is too risky, you avoid taking the flight in
the first place, and completely avoid the risk. Another example would be hiring an individual whose references
would not recommend rehiring him — by not hiring him, you avoid the risk that he would not be an asset to
your company.

•Transfer: In many instances, you can transfer the risk you take to another party. For instance, insurance
companies exist for exactly this reason. You can also outsource the process in which the risk is present to
another provider, thereby transferring the risk to the outsource provider.

•Reduce: Risk reduction is one of the most crucial steps for processes or activities that cannot be avoided, and
where risk cannot be transferred to another party. An example of this would be training your staff on how to
identify a phishing email, or on best practices involving login credentials and password hygiene.

•Accept: For some processes and activities, there is no option but to accept the risk. Of course, these instances
should only involve low risk, or repercussions that are easily managed. Some risks might be completely
acceptable and require you to take no action at all (a missed deadline on an open-ended project schedule, for
instance).

B.4k Defenses
Risk treatment Options

break risk treatment options down in a number of types:

Option

Avoid avoid the activity that creates the risk Checking Whitelisting reject strings that seems invalid
(safer than fix it).

Transfer transfer the risk you take to another party Sanitization Escaping Replace problematic characters
with safe ones

Reduce security actions for reducing the
vulnerabilities

Checking Blacklisting Reject strings with possibly bad
chars

Accept no action at all (or reduced one) Sanitization Blacklisting Delete the characters you don’t
want

B.5 Secure Coding Practice
SEI CERT CODING Standard

The photograph illustrates how the easiest way to break
system security is often to circumvent it rather than
defeat it (as is the case with most software vulnerabilities
related to insecure coding practices).

Top 10 Secure Coding Practices

https://wiki.sei.cmu.edu/confluence/display/seccode/Top
+10+Secure+Coding+Practices

https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices

B.5b Secure Coding Practice
SEI: Software Engineering Institute

SEI home page

B.5c Secure Coding Practice
SEI CERT CODING Standard

Top 10 Secure Coding Practices

1.Validate input. Validate input from all untrusted data sources. Proper input validation can eliminate the vast majority of software vulnerabilities. Be suspicious of most
external data sources, including command line arguments, network interfaces, environmental variables, and user controlled files [Seacord 05].

2.Heed compiler warnings. Compile code using the highest warning level available for your compiler and eliminate warnings by modifying the code [C MSC00-A, C++
MSC00-A]. Use static and dynamic analysis tools to detect and eliminate additional security flaws.

3.Architect and design for security policies. Create a software architecture and design your software to implement and enforce security policies. For example, if your
system requires different privileges at different times, consider dividing the system into distinct intercommunicating subsystems, each with an appropriate privilege set.

4.Keep it simple. Keep the design as simple and small as possible [Saltzer 74, Saltzer 75]. Complex designs increase the likelihood that errors will be made in their
implementation, configuration, and use. Additionally, the effort required to achieve an appropriate level of assurance increases dramatically as security mechanisms
become more complex.

5.Default deny. Base access decisions on permission rather than exclusion. This means that, by default, access is denied and the protection scheme identifies conditions
under which access is permitted [Saltzer 74, Saltzer 75].

6.Adhere to the principle of least privilege. Every process should execute with the least set of privileges necessary to complete the job. Any elevated permission should
only be accessed for the least amount of time required to complete the privileged task. This approach reduces the opportunities an attacker has to execute arbitrary
code with elevated privileges [Saltzer 74, Saltzer 75].

7.Sanitize data sent to other systems. Sanitize all data passed to complex subsystems [C STR02-A] such as command shells, relational databases, and commercial off-
the-shelf (COTS) components. Attackers may be able to invoke unused functionality in these components through the use of SQL, command, or other injection attacks.
This is not necessarily an input validation problem because the complex subsystem being invoked does not understand the context in which the call is made. Because
the calling process understands the context, it is responsible for sanitizing the data before invoking the subsystem.

8.Practice defense in depth. Manage risk with multiple defensive strategies, so that if one layer of defense turns out to be inadequate, another layer of defense can
prevent a security flaw from becoming an exploitable vulnerability and/or limit the consequences of a successful exploit. For example, combining secure programming
techniques with secure runtime environments should reduce the likelihood that vulnerabilities remaining in the code at deployment time can be exploited in the
operational environment [Seacord 05].

9.Use effective quality assurance techniques. Good quality assurance techniques can be effective in identifying and eliminating vulnerabilities. Fuzz testing, penetration
testing, and source code audits should all be incorporated as part of an effective quality assurance program. Independent security reviews can lead to more secure
systems. External reviewers bring an independent perspective; for example, in identifying and correcting invalid assumptions [Seacord 05].

10.Adopt a secure coding standard. Develop and/or apply a secure coding standard for your target development language and platform.

https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-vulnerability
https://wiki.sei.cmu.edu/confluence/display/c/MSC00-C.+Compile+cleanly+at+high+warning+levels
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046361
https://wiki.sei.cmu.edu/confluence/pages/viewpage.action?pageId=88046361
https://wiki.sei.cmu.edu/confluence/display/c/STR02-C.+Sanitize+data+passed+to+complex+subsystems
https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-securityflaw
https://wiki.sei.cmu.edu/confluence/display/c/BB.+Definitions#BB.Definitions-exploit

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni B. Build Security In
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

