Secure Programming

A.A. 2022/2023
Corso di Laurea in Ingegneria delle Telecomnicazioni

|. Free Security Tools

Paolo Ottolino
Politecnico di Bari

B DIPARTIMENTO DI
— INGEGNERIA ELETTRICA
— E DELLINFORMAZIONE

Secure Programming Lab: Course Program

S ra--TxrTeoammoono®mp

Intro Secure Programming: « Who-What-Why-When-Where-How»

Building Security in: Buffer Overflow, UAF, Command Inection

SwWA: Weaknesses, Vulnerabilities, Attacks

SwWA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

Security & Protection: Objectives (CIA), Risks (Likelihood, Impact), Rating Methodologies

Security & Protection: Security Indicators, BIA, Protection Techniques (AAA, Listing, Duplication etc.)
Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration
Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps (OWASP DSOMM, NIST SSDF)
Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD etc.)

Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR) :
Operating Environment: Kali Linux on WSL

Python: Powerful Language for easy creation of hacking tools
Exercises: SecureFlag

H. Free Security Tools
Agenda

I.1 Recap & Shutters
1.2 Shutters drill down
1.3 Tools

.1 Free Security Tools: Recap

Secure Programming Arguments

Goals Techniques Measures Approaches Abstractions
- on CriterialRick Rat Risk Remediation|Indicators
. rotection Criteria:Risk Rating . Avoid . KPI
Cybersecurlty CIA Filtering e SLEXARO (likelihood) Transfer e KGI
. * Hiding * BIA Mitigate * SLA
. (Attacker Profiles)|. Logging + Framework Checklist Accepts . etc.
. N CWE
WEELGESYES Attack Lifecycle: |[Vulnerability REC 4949
e Cyber Kill Chain » Lifecycle
‘ - MITRE ATT&CK - Security Bulletins CVE / CVSS OWASP Top10 |(Glossary)
. Responsibility
_ _ CSMA Sharing
Proactive Design Containers ZTA Pillars : Laaaass DevOps SDO Maturity
(Orchestration) . Saas SecDevOps Model
Input Validation
. . Code Bugs « Checking Whitelist
Defensive Codlng Secure Coding « BOF * Sanitizing Escape
* UAF * Checking Blacklist

Practices

* Uncontrolled Input

Bugs & Exploits

* Sanitizing Blacklist

Shift Left

|.1a Free Security Tools: Recap

from Arguments to Shutters

S E— [= —
HTTPS (WS) |

O
o)

FW

HTTPS|(UI)

FW

L

Weaknesses

Proactive Design

.‘ (Orchestration)

Defensive Coding

Goals [Techniques Measures IApproaches \Abstractions
, Risk Remediation{indicators
Protection CriteriajRisk Rating Avoid . kPl
L SLExARO (likelihood) . ke
u = SLA
(Attacker Profiles)|. |oggi rk Checkli
CWE
Attack Lifecycle: [Vulnerability RFC 4949
« Cyber Kill Chain « Lifecycle
. MITRE ATT&CK . s‘-‘(_.-w_-.w.-‘-w- CVE / CVSS OWASP Top10 |(Glossary)
Responsibility
CSMA Sharing
Containers ZTA Pillars :jjfs DevOps SDO Maturity
L Gans SecDevOps Model
Input Validation
Code Bugs b Checking Whitelist
Secure Coding l+ BOF + Sanitizing Escape
i I+ UAF . I+ Checking Blacklist .
Practices Bugs & Exploits Shift Left

I* Uncontrolled Input

I Sanitizing Blacklist

|.1b Free Security Tools: Recap

from Arguments to Shutters

Cybersecurity

Weaknesses

3 r =

Proactive Design

Defensive Coding

O
o)

FW

HTTPS|(UI) ﬁ

FW

Goals [Techniques Measures IApproaches |Abstractions
, , Risk Remediation{indicators
Protection Criteria:Risk Rating . Avoid . kPl
CIA n * SLExARO (likelihood) + KGI
8 . SLA
(Attacker Profiles)|. Checklist . etc
)) CWE
Attack Lifecycle: [Mulnerability RFC 4949
= Cyber Kill Chain » Lifecycle
+_MITRE ATT&CK 5 s‘.tcw.l'\tr‘;ﬂ.Hﬁr\M ICVE / CVSS OWASP Top10 |(Glossary)
Responsibility
CSMA Sharing
Containers ZTA Pillars :ff;s DevOps SDO Maturity
(Orchestration) L cous SecDevOps Model
Input Validation
Code Bugs b Checking Whitelist
Secure Coding l+ BOF I Sanitizing Escape
I* UAF I+ Checking Blacklist

Practices

I* Uncontrolled Input

Bugs & Exploits

I Sanitizing Blacklist

Shift Left

|.1c Free Security Tools: Shutters

Secure Programming Shutters

Know Reduce Evaluate Execute Process
: , T ' :A - _ == | | ow ":w'" Medium o et —" .

Cybersecurit = 2 — I a e Monitor

Y ' Y ‘ e Plan 0z
ﬁ Attackers Protection Risk Mgmt

_A; S | BEg/8na[E crr . —
T B e | e | = S K wir Test g_?@
eaknesses K= : e o lm|mre . ‘
. e = Release @

Vulnerability Mgm

] L=

o
; . —— - Deploy %
Proactive Design DAST S == Operate [E
Architecture Mgmt

LR |F——— 3
Defensive Coding Sl R el g ~|z=— == -~ [Code éﬂﬁ
s SAST . Qud T uild

(Audit) Log 7 Input Mgmt N

l.1d Free Security Tools: Shutters

Secure Programming Shutters

Cybersecurity

2 U

Weaknesses

] [

Proactive Design

Defensive Coding

Know Reduce Evaluate Execute Process
Attackers Protectlon Risk Ratin Risk Mgmt
Profile AAA g . i i
o Avoid Monitor
Trends Duplicate * Likelihood e Transfer
Motive Filter . Impact .. Plan
Opportunity Log o Level ‘ Mitigate
. Means . Encode * Accepts
CVE SCA CVSS Vulnerablllty Mgmt
+ Description + Identify o Substitute Test
+ Severity - Dependences * Exploitability « Virtual Patch
+ References + Vulnerability e Impact Release
* Weaknesses » OSlInt, CLOSInt + Scope * Patch
Configuration Speed * Ignore/Postpone
CSMA ZTA (Pillars) DAST Architecture Mgmt
Users Identity « WAF Dep'oy
e Cloud/On- premise- Endpoint * Explore « Supbplier
+ Network + Network o Test PP Operate
* Application * Workload e FEvaluate * Implement
Data - Data Ignore/Postpone
(Audlt) Log |Access Control SAST Input Mgmt
3ate. ;lme . x:ler;‘t:lfv Sean « Checking Whitelist Code
* User, Device * Aut ° . -
* NetAddr,Prot |- AuthZ * Prioritize San|t|z.|ng Escap.e Build
* Location * Govern (Certify) Verify * Che.cl.(n.'\g BIaCkII_St
« Event/Activity « Monitor * Sanitizing Blacklist
SOAR IGA KPI

|.2b Drill Down: Software Composition Analysis

5 SCA challenges

1. Obscured visibility

2. Understanding the
dependency logic

Drowning in vulnerabilities

4. vulnerability database

Speed

TRAOULCe “aws_ecs_service* “moago*
ana - x
cluster » aws_ecs_cluster.foo.id
task_definition =

Avs_ecs_task_definition, monge.arn
desived count =)

Aan_role = ava_iam_role.foo.arn
depends_on = [ave_ias _xole golicy,foo)

type = “binpack*
field = “apa*

load balancer {

expression
“attridbute:ecs availability-zone in
(Ss-vast-Ta, us-west-2b]*

Y O %

1aC K8s CI/CD

Public but
secured

........

Private and
deprioritized

........

H ' H '
' . ' |
(@R}

' i v i
|
'

A

i 0 .

1 ' ’ App QI

2 ' 1

: J ' {

: ') ' :

. \ s

Container 4
R\mlllmo '

Orchestrator 4 Serveriess
' '
'
Host/VM

Cloud Services
C AN

https://snyk.io/series/open-source-security/software-composition-analysis-sca/

https://www.paloaltonetworks.com/cyberpedia/what-is-sca

Dep

Dep

p

TIT
'8
TLISTT

Dep

Dep

.

dAEa0

Dep

o &

Dep

-

Dep

o
&
o

https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.paloaltonetworks.com/cyberpedia/what-is-sca

|.2¢ Drill Down: Statis Application Security Testing
7 Stages of SAST

x Scan

1. (Code) REPORTING
2. Scan Code x

3. Prioritize

4. (Understand)

5. (Learn) Rescan/Verify @

6. (Fix)

7. Rescan/Verify

N

Qe

& Prioritze

l Understand

GOvVERNANCE

https://snyk.io/learn/application-security/static-application-security-testing/

l Learn

https://snyk.io/learn/application-security/static-application-security-testing/

.2d Drill Down: Dynamic Application Security Testing

Using Zed Attack Proxy

1.

Passive Scan: the intended applications under
assessment are being intercepted by the tool &
those requests / responses are observed by the tool
to flag security misconfigurations such as missing
security headers or cookie settings. The tool doesn’t
send any new requests on its own in this phase, it
just analyses the intercepted requests / responses.

Active Scan: the intended applications under
assessment are attacked by the tool by sending new
requests with malicious payloads to discover security
violations.The tool flags the violations based on its
behaviour / received responses from the server after
injecting malicious payloads. These payloads are
introduced by the tool after we complete
intercepting the application journeys that we want to
test so they act as a baseline for the tool to start
sending new requests with new payloads.

@ ZAP File Edit View Report Tools Import Online Help

StandardMode 3|[[] |G| JETETEOOETE B O 0 0 0 B &2 7 @ PP O[%
@ Sites B 47 Quick Start

@ el= Text ¢ @ @
¥ [Contexts POST http://demo.testfire.net/doLogin HTTP/1.1

8 Default Context llser—Anent: Mnzilla/5.A (Macintosh; Intel Mac 0f
2]
mml+xml, applicat

v @ Sites
v [= P hup://demo.testfire.net Policy Name Add form-urlencoded
(3 1 bank Default Policy
1 @ POST:doLogin(btnSubn Madify

[CET:index.jsp

¥ GET:login.jsp *t/login. jsp
3 CET:|mmes inm | 186698F7TAD3DCABY
=] - - -
[] [] Scan Palicy
\ G| & | | IScan Policy @
|7 E=hlo] Policy: Default Policy
Client Browser I
Information Gathering DefaultdlertThreshold:¥ \ediym [\(Defaultthreshold) |
= Injection
@ @& V7 Filter: | MJisceIIaneous Default Attack Strength: | pedium B (Default attacks)
imi s Securi =
d avrrinpll erver security Apply | Default [Threshold To | All B Rules | Go
44 7114108 Appl Default strength To All Rules Go i
50 7/14/24 PR |) 9 K f.
53 7/14/20 Category = Threshold Strength E
547/14/24 Client Browser s
557/14/20 Information Gathering Default Default e
57 7/14/20 Injection Default Default
58 7/14/2(0 Miscellaneous Default Default
59 7/14/20 Server security Default Default s
60 7/14/20 15
617/14/20 Is
63 7/14/24 Is
654 7/14/20 15
65 7/14/20Thresholds and strengths can be changed by clicking on them Cancel 0K i
717/14/20 nls
737/14/20 5:22:48 PM GET https://safebrowsing.googleapis.com/v4 /threatList... 200 OK 142 ms

https://gotowebsecurity.com/dynamic-application-security-testing-dast-using-owasp-zap-v2-9-0/

https://gotowebsecurity.com/dynamic-application-security-testing-dast-using-owasp-zap-v2-9-0/

|.2e Drill Down: Security Orchestration and Automation
SIEM and SOAR

Security Metwork

Devices Devices Endpoints Apps Servers SIEM and SOAR work together, enabling you to detect,
g :

@ * % investigate, and respond quickly and confi

% idently to critical
A R S .

cybersecurity threats across your organization:

* Unifying threat & telemetry data across disparate
SIEM sources
¢ L 4’ ¢ * I|dentifying event and alert trends
= * Prioritizing alerts to minimize false positives
o % % E * Simplifying compliance and reporting obligations
Alaris Dashboards (W Rt * Building playbooks that orchestrate the critical tools you
lv rely on
SOAR * Rapidly assessing scenarios and quantifying their impact
on your organization
‘ | | e Streamlining incident response through a single,
: P4 customizable interface
‘ o El@m * Automating routine and repeatable incident response
R b f% tasks and workflows
esponse Automated ase

Bots Playbooks Management

|.3a OWASP

Tools

OWASP Tools

*OWASP Amass is a penetration testing tool for mapping the target application’s attack surface.

*The OWASP Zed Attack Proxy (ZAP) is a useful tool for testing web applications, comparable to widely-used penetration testing proxies such
as Burp or Fiddler.

*OWASP WebGoat (Java), Security Shepherd (Java/Android) and OWASP Juice Shop (Node.js) are intentionally vulnerable applications to help
practice your application security skills.

*OWASP SKF Write-Ups: https://owasp-skf.gitbook.io/asvs-write-ups/

*Dependency-Check and Dependency-Track allow automated detection of vulnerable project dependencies in a number of programming
languages and build systems, with CI/CD integration.

OWASP Code

*The OWASP CSRFGuard protects against Cross-Site Request Forgery attacks for Java web apps.

*The OWASP ModSecurity Core Rule Set is a set of generic attack detection rules to be used with web application firewalls to protect against many common
attacks

https://owasp.org/www-project-amass/
https://cydrill.com/devops/penetration-testing-what-it-can-and-cannot-do/
https://www.zaproxy.org/
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-security-shepherd/
https://owasp.org/www-project-juice-shop/
https://owasp-skf.gitbook.io/asvs-write-ups/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-track/
https://owasp.org/www-project-csrfguard/
https://cydrill.com/owasp/cross-site-request-forgery-csrf-past-and-future/
https://coreruleset.org/

.3b OWASP

Labs

OWASP Security Shepherd: https://owasp.org/www-project-security-shepherd/

Beginner Guide to OWASP: https://blog.gitguardian.com/a-beginners-guide-to-owasp/

OWASP Vulnerable Flask App: https://owasp.org/www-project-vulnerable-flask-app/

OWASP VWAD (Vulnerable WebApp Directory, developed in Ruby on Rails):
https://owasp.org/www-project-vulnerable-web-applications-directory/

GitLab SecureFlag Integration: https://gitlab.com/gitlab-org/gitlab/-
[/merge requests/111592

GitLab Partner Solution Integration — SecureFlag: https://gitlab.com/gitlab-
com/alliances/alliances/-/issues/297

web and mobile application security training
platform

Easy introduction to the community making free
security tools and resources

lab environment created for people who want to
improve themselves in the field of web penetration
testing

well maintained registry of known vulnerable web
and mobile applications currently available, to be
used by web developers, security auditors, and
penetration testers to practice their knowledge and
skills

GitLab — SecureFlag integration

https://owasp.org/www-project-security-shepherd/
https://blog.gitguardian.com/a-beginners-guide-to-owasp/
https://owasp.org/www-project-vulnerable-flask-app/
https://owasp.org/www-project-vulnerable-web-applications-directory/
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/111592
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/111592
https://gitlab.com/gitlab-com/alliances/alliances/-/issues/297
https://gitlab.com/gitlab-com/alliances/alliances/-/issues/297

|.3c OWASP

Documentation

OWASP Documentation

*The Top Ten is a very important document to learn more about the most critical web application security risks. Find the
current version at owasp.org.

*The OWASP Cheat Sheet Series condenses the most important things to know about various vulnerabilities — as well as
security features — into an easily-digestible format. It is also reasonably up-to-date.

*The OWASP Security Knowledge Framework provides guidance for designing secure web applications.

*For testers, the OWASP Application Security Verification Standard as well as the OWASP Web Security Testing Guide and
the Mobile Security Testing Guide give guidance about what to target during a security test, and — more importantly — how to
test for certain weaknesses.

*The OWASP Software Assurance Maturity Model (SAMM) is one of the commonly-used methodologies to build security into
your software development process (alongside BSIMM and Microsoft SDL).

*DevSecOps Maturity Model: https://owaspsamm.org/presentations/SUD2021/SAMM DevSecOps Maturity Model.pdf

https://cydrill.com/owasp/the-owasp-top-ten-what-it-is-and-isnt/
https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/
https://owasp.org/www-project-security-knowledge-framework/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-samm/
https://www.bsimm.com/
https://www.microsoft.com/en-us/securityengineering/sdl
https://owaspsamm.org/presentations/SUD2021/SAMM_DevSecOps_Maturity_Model.pdf

.3d OWASP

SAMM https://owasp.org/www-project-samm/

OWASP Software Assurance Maturity Model

Business Governance Design Implementation Verification Operations
functions
Securit Architecture
prat:tlcgs Strategy & Metrics Threat Assessment Secure Build Assessment Incident Management
Create & Measure & Application Threat Build Software Architecture Architecture ncident Incident
promate improe risk |."i":'.lfl|9'- rnn:u'_l;_'_i"g proCess dependencias walidation mit g,u'_il:.n detection response
, , , , Requirements-driven Environment
Policy & Compliance Security Requirements Secure Deployment 4 :
Testing Management
Folicy & Compliance Software Supplier Deployment Secret Control Misuse/abuse Configuration Patch &
standards management requirements SECUrity process management verification testing hardening update

B I s e

Education & Guidance Secure Architecture
Training & Organization Architecture Techno ’.-r;-
awarenass & culture design ITANARENE

Defect Management

I

Security Testing

B

Operational

Management
Defect Metrics & Scalable Deep Data Legacy
tracking feedback basaline understanding protection managemient

=i B o=l B =l B =l B =l B

https://owasp.org/www-project-samm/

|.3e NIST

SAMATE Tools https://www.nist.gov/itl/ssd/software-quality-group/samate

Software Assurance Metric And Tool Evaluation

NIST SOFTWARE ASSURANCE REFERENCE DATASET

*SARD: Software Assurance Reference Dataset (https://samate.nist.gov/SARD/)
oy o syt roran g st T s . oo e s cr. i oo e GFOWINEG cOllection of test programs with documented weaknesses

f weaknesses. The Acknowledgments and Test Case Descriptions page describes the content. The Manual explains how to use the
SARD website.

= Collection of more than 450,000 test cases
From piece of code to production software

« Various types of weaknesses c
php

*SATE: Static Analysis Tool Exposition (https://www.nist.gov/itl/ssd/software-quality-

R group/samate/static-analysis-tool-exposition-sate) recurring non-competitive study of
SOFTWARE QUALITY GROUP
static analysis tool effectiveness, aiming at improving tools and increasing public
Static Analysis Tool Exposition (SATE) awareness and adoption
sAMATY

THE BUGS FRAMEWORK (BF) - *BF: the Bug Framework (https://samate.nist.gov/BF/) classifying software bugs and
weaknesses to allow precise descriptions of vulnerabilities that exploit them

SOFTWARE DEVELOPERS' AND TESTERS' "BEST FRIEND"

https://www.nist.gov/itl/ssd/software-quality-group/samate
https://samate.nist.gov/SARD/
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://samate.nist.gov/BF/

.3f NIST

SSDF https://csrc.nist.gov/Projects/ssdf

Secure Software Development Framework

set of fundamental, sound, and secure software development practices based on
established secure software development practice documents from organizations

such as BSA, OWASP, and SAFECode.
Prepare the
Organization (PO) ; g
Practnces

Produce Well- Respond to
Secured Software (PW) Vulnerabilities (RV)
Practlces e Practices

https://csrc.nist.gov/Projects/ssdf

1.3g Other

Tools k4 PortSwigger

Products v | Solutions v | Research

Dashboard Learnin, g path Latest topics Vv All labs Mystery labs Hall of Fame Vv Get started

*PortSwigger (Creator of Burp suite) - Web Security Academy:

https://portswigger.net/web-security Web Security
Academy|*]

Free, online web security training
from the creators of Burp Suite

*(Web) AppSecMap: https://appsecmap.com/AppSecMap

Graphiron Downloader Graphiron Stealer Elephant Dropper

*TreathRay (Malware Code Reuse Analysis): s =Rt
https://threatray.com/blog/linking-and-tracking-uac-0056- tephant Downioader 's;gph?m_.mp.anueﬁmmam) Eupant Ctenirapsie
tooling-through-code-reuse-analysis/ E B E =55

https://portswigger.net/web-security
https://appsecmap.com/AppSecMap
https://threatray.com/blog/linking-and-tracking-uac-0056-tooling-through-code-reuse-analysis/
https://threatray.com/blog/linking-and-tracking-uac-0056-tooling-through-code-reuse-analysis/

|.3h Other

XSS Labs

Warning: You are entering the XSS game area

Welcome, recruit!
*Google XSS Game - https://xss- /

Oog e a me ttps' XSS ga me'a ppSpOt'Com Cross-site scripting (XSS) bugs are one of the most common and dangerous types of
vulnerabilities in Web applications. These nasty buggers can allow your enemies
to steal or modify user data in your apps and you must learn to dispatch them,

pronto!

At Google, we know very well how important these bugs are. In fact, Google is so
$7,500 for dangerous XSS bugs discovered in our most sensitive products.

In this training program, you will learn to find and exploit XSS bugs. You'll use

this knowledge to confuse and infuriate your adversaries by preventing such bugs

from happening in your applications.

There will be cake at the end of the test.

Excess XSS

A compront IR *A comprehensive tutorial on cross-site scripting: https://excess-xss.com/

Created by Jal allin and Ire

@reddit B r/xss v B /xss @ Sear t @@ 0 O

Overview XSS Attacks Preventing XSS Summary,

*Reddit XSS: https://www.reddit.com/r/xss/ xss| XSS - Cross Site Scripting (END

Posts

_ (Ahout Community

https://xss-game.appspot.com/
https://excess-xss.com/
https://www.reddit.com/r/xss/

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni I. Free Security Tools
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

