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Secure Programming Lab: Course Program

S ra--TxrTeoammoono®mp

Intro Secure Programming: « Who-What-Why-When-Where-How»

Building Security in: Buffer Overflow, UAF, Command Inection

SwWA: Weaknesses, Vulnerabilities, Attacks

SwWA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

Security & Protection: Objectives (CIA), Risks (Likelihood, Impact), Rating Methodologies

Security & Protection: Security Indicators, BIA, Protection Techniques (AAA, Listing, Duplication etc.)
Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration
Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps (OWASP DSOMM, NIST SSDF)
Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD etc.)

Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR) :
Operating Environment: Kali Linux on WSL

Python: Powerful Language for easy creation of hacking tools
Exercises: SecureFlag




H. Free Security Tools
Agenda

I.1 Recap & Shutters
1.2 Shutters drill down
1.3 Tools




.1 Free Security Tools: Recap

Secure Programming Arguments

Goals Techniques Measures Approaches Abstractions
- on CriterialRick Rat Risk Remediation|Indicators
. rotection Criteria:Risk Rating . Avoid . KPI
Cybersecurlty CIA Filtering e SLEXARO (likelihood) Transfer e KGI
. * Hiding * BIA Mitigate * SLA
. (Attacker Profiles)|.  Logging + Framework Checklist Accepts . etc.
. N CWE
WEELGESYES Attack Lifecycle: |[Vulnerability REC 4949
e Cyber Kill Chain » Lifecycle
‘ - MITRE ATT&CK - Security Bulletins CVE / CVSS OWASP Top10  |(Glossary)
. Responsibility
_ _ CSMA Sharing
Proactive Design Containers ZTA Pillars : Laaaass DevOps SDO Maturity
(Orchestration) . Saas SecDevOps Model
Input Validation
. . Code Bugs « Checking Whitelist
Defensive Codlng Secure Coding « BOF * Sanitizing Escape
* UAF * Checking Blacklist

Practices

* Uncontrolled Input

Bugs & Exploits

* Sanitizing Blacklist

Shift Left




|.1a Free Security Tools: Recap

from Arguments to Shutters
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|.1b Free Security Tools: Recap

from Arguments to Shutters
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|.1c Free Security Tools: Shutters

Secure Programming Shutters
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l.1d Free Security Tools: Shutters

Secure Programming Shutters
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|.2b Drill Down: Software Composition Analysis

5 SCA challenges

1. Obscured visibility

2. Understanding the
dependency logic

Drowning in vulnerabilities

4. vulnerability database

Speed
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https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.paloaltonetworks.com/cyberpedia/what-is-sca

|.2¢ Drill Down: Statis Application Security Testing
7 Stages of SAST
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https://snyk.io/learn/application-security/static-application-security-testing/

l Learn



https://snyk.io/learn/application-security/static-application-security-testing/

.2d Drill Down: Dynamic Application Security Testing

Using Zed Attack Proxy

1.

Passive Scan: the intended applications under
assessment are being intercepted by the tool &
those requests / responses are observed by the tool
to flag security misconfigurations such as missing
security headers or cookie settings. The tool doesn’t
send any new requests on its own in this phase, it
just analyses the intercepted requests / responses.

Active Scan: the intended applications under
assessment are attacked by the tool by sending new
requests with malicious payloads to discover security
violations.The tool flags the violations based on its
behaviour / received responses from the server after
injecting malicious payloads. These payloads are
introduced by the tool after we complete
intercepting the application journeys that we want to
test so they act as a baseline for the tool to start
sending new requests with new payloads.
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https://gotowebsecurity.com/dynamic-application-security-testing-dast-using-owasp-zap-v2-9-0/



https://gotowebsecurity.com/dynamic-application-security-testing-dast-using-owasp-zap-v2-9-0/

|.2e Drill Down: Security Orchestration and Automation
SIEM and SOAR

Security  Metwork
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esponse Automated ase
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|.3a OWASP

Tools

OWASP Tools

*OWASP Amass is a penetration testing tool for mapping the target application’s attack surface.

*The OWASP Zed Attack Proxy (ZAP) is a useful tool for testing web applications, comparable to widely-used penetration testing proxies such
as Burp or Fiddler.

*OWASP WebGoat (Java), Security Shepherd (Java/Android) and OWASP Juice Shop (Node.js) are intentionally vulnerable applications to help
practice your application security skills.

*OWASP SKF Write-Ups: https://owasp-skf.gitbook.io/asvs-write-ups/

*Dependency-Check and Dependency-Track allow automated detection of vulnerable project dependencies in a number of programming
languages and build systems, with CI/CD integration.

OWASP Code

*The OWASP CSRFGuard protects against Cross-Site Request Forgery attacks for Java web apps.

*The OWASP ModSecurity Core Rule Set is a set of generic attack detection rules to be used with web application firewalls to protect against many common
attacks



https://owasp.org/www-project-amass/
https://cydrill.com/devops/penetration-testing-what-it-can-and-cannot-do/
https://www.zaproxy.org/
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-security-shepherd/
https://owasp.org/www-project-juice-shop/
https://owasp-skf.gitbook.io/asvs-write-ups/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-track/
https://owasp.org/www-project-csrfguard/
https://cydrill.com/owasp/cross-site-request-forgery-csrf-past-and-future/
https://coreruleset.org/

.3b OWASP

Labs

OWASP Security Shepherd: https://owasp.org/www-project-security-shepherd/

Beginner Guide to OWASP: https://blog.gitguardian.com/a-beginners-guide-to-owasp/

OWASP Vulnerable Flask App: https://owasp.org/www-project-vulnerable-flask-app/

OWASP VWAD (Vulnerable WebApp Directory, developed in Ruby on Rails):
https://owasp.org/www-project-vulnerable-web-applications-directory/

GitLab SecureFlag Integration: https://gitlab.com/gitlab-org/gitlab/-
[/merge requests/111592

GitLab Partner Solution Integration — SecureFlag: https://gitlab.com/gitlab-
com/alliances/alliances/-/issues/297

web and mobile application security training
platform

Easy introduction to the community making free
security tools and resources

lab environment created for people who want to
improve themselves in the field of web penetration
testing

well maintained registry of known vulnerable web
and mobile applications currently available, to be
used by web developers, security auditors, and
penetration testers to practice their knowledge and
skills

GitLab — SecureFlag integration



https://owasp.org/www-project-security-shepherd/
https://blog.gitguardian.com/a-beginners-guide-to-owasp/
https://owasp.org/www-project-vulnerable-flask-app/
https://owasp.org/www-project-vulnerable-web-applications-directory/
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/111592
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/111592
https://gitlab.com/gitlab-com/alliances/alliances/-/issues/297
https://gitlab.com/gitlab-com/alliances/alliances/-/issues/297

|.3c OWASP

Documentation

OWASP Documentation

*The Top Ten is a very important document to learn more about the most critical web application security risks. Find the
current version at owasp.org.

*The OWASP Cheat Sheet Series condenses the most important things to know about various vulnerabilities — as well as
security features — into an easily-digestible format. It is also reasonably up-to-date.

*The OWASP Security Knowledge Framework provides guidance for designing secure web applications.

*For testers, the OWASP Application Security Verification Standard as well as the OWASP Web Security Testing Guide and
the Mobile Security Testing Guide give guidance about what to target during a security test, and — more importantly — how to
test for certain weaknesses.

*The OWASP Software Assurance Maturity Model (SAMM) is one of the commonly-used methodologies to build security into
your software development process (alongside BSIMM and Microsoft SDL).

*DevSecOps Maturity Model: https://owaspsamm.org/presentations/SUD2021/SAMM DevSecOps Maturity Model.pdf



https://cydrill.com/owasp/the-owasp-top-ten-what-it-is-and-isnt/
https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/
https://owasp.org/www-project-security-knowledge-framework/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-samm/
https://www.bsimm.com/
https://www.microsoft.com/en-us/securityengineering/sdl
https://owaspsamm.org/presentations/SUD2021/SAMM_DevSecOps_Maturity_Model.pdf

.3d OWASP

SAMM https://owasp.org/www-project-samm/

OWASP Software Assurance Maturity Model
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Policy & Compliance Security Requirements Secure Deployment 4 :
Testing Management
Folicy & Compliance Software Supplier Deployment Secret Control Misuse/abuse Configuration Patch &
standards management requirements SECUrity process management verification testing hardening update
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https://owasp.org/www-project-samm/

|.3e NIST

SAMATE Tools https://www.nist.gov/itl/ssd/software-quality-group/samate

Software Assurance Metric And Tool Evaluation

NIST SOFTWARE ASSURANCE REFERENCE DATASET

*SARD: Software Assurance Reference Dataset (https://samate.nist.gov/SARD/)
oy o syt roran g st T s . oo e s cr. i oo e GFOWINEG cOllection of test programs with documented weaknesses

f weaknesses. The Acknowledgments and Test Case Descriptions page describes the content. The Manual explains how to use the
SARD website.

= Collection of more than 450,000 test cases
From piece of code to production software

« Various types of weaknesses c
php

*SATE: Static Analysis Tool Exposition (https://www.nist.gov/itl/ssd/software-quality-

R group/samate/static-analysis-tool-exposition-sate) recurring non-competitive study of
SOFTWARE QUALITY GROUP . . . . . . . . . .
static analysis tool effectiveness, aiming at improving tools and increasing public
Static Analysis Tool Exposition (SATE) awareness and adoption
sAMATY

THE BUGS FRAMEWORK (BF) -  *BF: the Bug Framework (https://samate.nist.gov/BF/) classifying software bugs and
weaknesses to allow precise descriptions of vulnerabilities that exploit them

SOFTWARE DEVELOPERS' AND TESTERS' "BEST FRIEND"



https://www.nist.gov/itl/ssd/software-quality-group/samate
https://samate.nist.gov/SARD/
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://samate.nist.gov/BF/

.3f NIST

SSDF https://csrc.nist.gov/Projects/ssdf

Secure Software Development Framework

set of fundamental, sound, and secure software development practices based on
established secure software development practice documents from organizations

such as BSA, OWASP, and SAFECode.
Prepare the
Organization (PO) ; g
Practnces

Produce Well- Respond to
Secured Software (PW) Vulnerabilities (RV)
Practlces e Practices



https://csrc.nist.gov/Projects/ssdf

1.3g Other

Tools k4 PortSwigger

Products v | Solutions v | Research

Dashboard Learnin, g path Latest topics Vv All labs Mystery labs Hall of Fame Vv Get started

*PortSwigger (Creator of Burp suite) - Web Security Academy:

https://portswigger.net/web-security Web Security
Academy|*]

Free, online web security training
from the creators of Burp Suite

*(Web) AppSecMap: https://appsecmap.com/AppSecMap

Graphiron Downloader Graphiron Stealer Elephant Dropper

*TreathRay (Malware Code Reuse Analysis): s =Rt
https://threatray.com/blog/linking-and-tracking-uac-0056- tephant Downioader 's;gph?m_.mp.anueﬁmmam) Eupant Ctenirapsie
tooling-through-code-reuse-analysis/ E B E =55



https://portswigger.net/web-security
https://appsecmap.com/AppSecMap
https://threatray.com/blog/linking-and-tracking-uac-0056-tooling-through-code-reuse-analysis/
https://threatray.com/blog/linking-and-tracking-uac-0056-tooling-through-code-reuse-analysis/

|.3h Other

XSS Labs

Warning: You are entering the XSS game area

Welcome, recruit!
*Google XSS Game - https://xss- /

Oog e a me ttps' XSS ga me'a ppSpOt'Com Cross-site scripting (XSS) bugs are one of the most common and dangerous types of
vulnerabilities in Web applications. These nasty buggers can allow your enemies
to steal or modify user data in your apps and you must learn to dispatch them,

pronto!

At Google, we know very well how important these bugs are. In fact, Google is so
$7,500 for dangerous XSS bugs discovered in our most sensitive products.

In this training program, you will learn to find and exploit XSS bugs. You'll use

this knowledge to confuse and infuriate your adversaries by preventing such bugs

from happening in your applications.

There will be cake at the end of the test.

Excess XSS

A compront IR *A comprehensive tutorial on cross-site scripting: https://excess-xss.com/

Created by Jal allin and Ire

@reddit B r/xss v B /xss @ Sear t @@ 0 O

Overview XSS Attacks Preventing XSS Summary,

*Reddit XSS: https://www.reddit.com/r/xss/ xss| XSS - Cross Site Scripting (END

Posts

_ ( Ahout Community



https://xss-game.appspot.com/
https://excess-xss.com/
https://www.reddit.com/r/xss/
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