Secure Programming

A.A. 2022/2023
Corso di Laurea in Ingegneria delle Telecomnicazioni

L. Python: powerful language

Paolo Ottolino
Politecnico di Bari

B DIPARTIMENTO DI
— INGEGNERIA ELETTRICA
— E DELLINFORMAZIONE

Secure Programming Lab: Course Program

2T ASF T IOMMOO® P>

Intro Secure Programming: « Who-What-Why-When-Where-How»

Building Security in: Buffer Overflow, UAF, Command Inection

SwWA: Weaknesses, Vulnerabilities, Attacks

SwWA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

Security & Protection: Objectives (CIA), Risks (Likelihood, Impact), Rating Methodologies

Security & Protection: Security Indicators, BIA, Protection Techniques (AAA, Listing, Duplication etc.)
Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration
Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps (OWASP DSOMM, NIST SSDF)
Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins
Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR) :
Operating Environment: Kali Linux on WSL

Python: Powerful Language for easy creation of hacking tools
Exercises: SecureFlag

L. Python

Agenda

L.1 Python as Hacking Tool
L.2 Energy Efficiency across Programming language

L.1 Python

Hacking Tools

Ethical Hacking with Python

https://www.thepythoncode.com/topic/ethical-hacking

How to Inject Code into HTTP Responses in
the Network in Python

How to Make an HTTP Proxy in Python

https://www.thepythoncode.com/topic/ethical-hacking

L.1b Python

Hacking Tools

Ethical Hacking with Python

https://www.thepythoncode.com/topic/ethical-hacking

How to Build a SQL Injection Scanner in _ . .
Python How to Build a XSS Vulnerability Scanner in

Python

https://www.thepythoncode.com/topic/ethical-hacking

L.1c Python

Hacking Tools

Ethical Hacking with Python

https://www.thepythoncode.com/topic/ethical-hacking

How to Make a Subdomain Scanner in Python How to Extract All Website Links in Python

https://www.thepythoncode.com/topic/ethical-hacking

L.2 Energy Efficiency Across Programming Language

How Does Energy, Time, and Memory Relate

Energy Efficiency, Programming
Languages, Language
Benchmarking, Green Software

https://greenlab.di.uminho.pt/wp-
content/uploads/2017/09/paperSLE.pdf

Energy Efficiency across Programming Languages

How Does Energy, Time, and Memory Relate?

Rui Pereira
HASLab/INESC TEC
Universidade do Minho, Portugal
ruipereira@di.uminho.pt

Jacome Cunha
NOVA LINCS, DI FCT
Univ. Nova de Lisboa, Portugal
jacome@fct.unl.pt

Abstract

This paper presents a study of the runtime, memory usage
and energy consumption of twenty seven well-known soft-
ware languages. We monitor the performance of such lan-
guages using ten different programming problems, expressed
in each of the languages. Our results show interesting find-
ings, such as, slower/faster languages consuming less/more
energy, and how memory usage influences energy consump-
tion. We show how to use our results to provide software
engineers support to decide which language to use when
energy efficiency is a concern.

CCS Concepts -« Software and its engineering — Soft-
ware performance; General programming languages;

Keywords Energy Efficiency, Programming Languages, Lan-

guage Benchmarking, Green Software

ACM Reference format:
Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jicome Cunha,
Joio Paulo Fernandes, and Joio Saraiva. 2017. Energy Efficiency
across Programming Languages. In Pmr.‘ecdmgs ufSLEJl 7, Vancouver,
BC, Canada, October 23-24, 2017, 12 pages.

https://doi.org/10.1145/3136014.3136031

Marco Couto
HASLab/INESC TEC
Universidade do Minho, Portugal
marco.l.couto@inesctec.pt

Joao Paulo Fernandes
Release/LISP, CISUC

Universidade de Coimbra, Portugal Universidade do Minho, Portugal

jpf@dei.uc.pt

Francisco Ribeiro, Rui Rua
HASLab/INESC TEC
Universidade do Minho, Portugal
fribeiro@di.uminho.pt
rrua@di.uminho.pt

Jodo Saraiva
HASLab/INESC TEC

saraiva@di.uminho.pt

productivity - by incorporating advanced features in the lan-
guage design, like for instance powerful modular and type
systems - and at efficiently execute such software - by de-
veloping, for example, aggressive compiler optimizations.
Indeed, most techniques were developed with the main goal
of helping software developers in producing faster programs.
In fact, in the last century performance in software languages
was in almost all cases synonymous of fast execution time
(embedded systems were probably the single exception).

In this century, this reality is quickly changing and soft-
ware energy consumption is becoming a key concern for
computer manufacturers, software language engineers, pro-
grammers, and even regular computer users. Nowadays, it
is usual to see mobile phone users (which are powerful com-
puters) avoiding using CPU intensive applications just to
save battery/energy. While the concern on the computers’
energy efficiency started by the hardware manufacturers, it
quickly became a concern for software developers too [27].
In fact, this is a recent and intensive area of research where
several techniques to analyze and optimize the energy con-
sumption of software systems are being developed. Such
techniques already provide knowledge on the energy effi-

T -

https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf
https://greenlab.di.uminho.pt/wp-content/uploads/2017/09/paperSLE.pdf

L.2a Energy Efficiency Across Programming Language

How Does Energy, Time, and Memory Relate

Software Language Engineering

design, implement and evolve software languages:

Who/What

Improving Programmers | incorporating Developing: powerful This century
Productivity advanced modular and type systems
features in the

language design

Efficiencing Developed Reducing Runtime: aggressive Last century
Execution Software memory compiler optimizations
consumption,
instructions

... but the reality is quickly changing and software energy consumption is becoming a key concern

L.2b Energy Efficiency Across Programming Language

How Does Energy, Time, and Memory Relate

Software Language Engineering

design, implement and evolve software languages:

Who/What

Improving Programmers | incorporating Developing: powerful This century
Productivity advanced modular and type systems
features in the

language design

Efficiencing Developed Reducing Runtime: aggressive Last century
Execution Software memory compiler optimizations
consumption,
instructions

... but the reality is quickly changing and software energy consumption is becoming a key concern

L.2c Energy Efficiency Across Programming Language

How Does Energy, Time, and Memory Relate

CLBG: Computer Language Benchmarks Game

@ benchmarksgame-team.pages.debian.net/benchmarksgame/indexhtm|

The Computer Language
23.03 Benchmarks Game

a free software project for comparing how a given subset of
simple algorithms can be implemented in various popular “Which programming language is fastest?”
programming languages.

Top 5+ program performance comparisons —

. . C# vs Java Go versus Java
The project consists of:
A set of very simple algorithmic problems Ruby vs Python Rust versus Ci+
* \Various implementations to the above problems in various Rust vs Go
programml-ng Ianguages' . Compare measurements of a transliterated
e Aset of unit tests to verify that the submitted program —
implementations solve the problem statement too simple simple

* A framework for running and timing the implementations
* A website to facilitate the interactive comparison of the
results

Compare the “fastest” contributed programs -

box plot charts

L.2d Energy Efficiency Across Programming Language
Test Design and Execution (based on CLBG)

Benchmark Description Input
n-body E‘!uuble Iprecisiun N-body SOM
simulation
fannkuch- Indexed access to tiny integer 19
redux sequence
spectral- Eigenvalue using the power
5,500
norm method
Generate Mandelbrot set
mandelbrot . 16,000
portable bitmap file
Streaming arbitrary precision
pidigits reaming YP 10,000
arithmetic
Match DNA 8mers and fasta
regex-redux . .
substitute magic patterns output
fFasta Generate and write random 25M
DNA sequences
i Hashtable update and fasta
k-nucleotide e peaE .
k-nucleotide strings output
reverse- Read DNA sequences, write fasta
complement their reverse-complement output
. Allocate, traverse and .
binary-trees , 21
deallocate many binary trees
chameneos- Symmetrical thread rendezvous M
redux requests)
meteor- Search for solutions to shape 5 008
contest packing puzzle ’
. Switch from thread to thread
thread-ring 50M

passing one token

Suite of programs

Paradigm Languages
. Erlang, F#, Haskell, Lisp, Ocaml, Perl,
Functional Racket, Ruby, Rust;
Imperative Ada, C, C++, F#, Fortran, Go, Ocaml,
P Pascal, Rust;

Ada, C++, C#, Chapel, Dart , F#, Java,

Object- JavaScript, Ocaml, Perl, PHP, Python,

Oriented Racket, Rust, Smalltalk, Swift,
TypeScript;

Seripting Dart, Hack, JavaScript, JRuby, Lua, Perl,

PHP, Python, Ruby, TypeScript;

=>» The Energy Consumption
Is calculated by the energy consuption of the system

call (RAPL: Running Average Power Limit)

Suite of languages
(having free available
compilers 2 27)

Results

The greenest Language is C

Python requires about 76
time the energy of C for
executing the same activity

Python takes about 72
more time than C for
executing the same
activities

Python asks for about 2-3
times the size of memory
required by P for executing
the same activities (Java 6)

L.2e Energy Efficiency Across Programming Language

| Total

Energy Time Mb
iy C 1.00 ic) C 1.00 ic) Pascal 1.00
{c) Rust 1.03 ic) Rust 1.04 ic) Go 1.05
(o) C++ 1.34 ic) C++ 1.56 ey C 1.17
i) Ada 1.70 (c) Ada 1.85 ic) Fortran 124
iv) Java 1.98 {v) Java 1.89 ic) C++ 1.34
ic) Pascal 2.14 i) Chapel 2.14 (c) Ada 1.47
{c) Chapel 2.18 ic) Go 2.83 (c) Rust 1.54
{v) Lisp 2.27 ic) Pascal 3.02 iv) Lisp 1.92
i) Ocaml 2.40 {c) Ocaml 3.09 ic) Haskell 2.45
{c) Fortran 2.52 (v] Ca 3.14 iy PHP 2.57
ic) Swift 2.79 {v) Lisp 3.40 ic) Swift 2.71
() Haskell 3.10 ic) Haskell 3.55 (i) Python 280
iv) Cwt 3.14 ic) Swift 4,20 (c) Ocaml 2.82
i) Go 3.23 {c) Fortran 4.20 iv) Cif 2.85
(i) Dart 3.83 {v) Fif 6.30 i) Hack 3.34
iv) F# 413 {i) JavaScript 6.52 iv) Racket 3.52
{i} JavaScript 4.45 (i) Dart 6.67 ii) Ruby 3.97
iv) Racket 7.91 v Racket 11.27 ic) Chapel 4.00
{i} TypeScript 21.50 (i) Hack 26.99 iv) F# 4.25
(i} Hack 24.02 (i) PHI 27.64 (i) JavaScript 4.59
{i) PHP 29.30 {v) Erlang 36.71 ii) TypeScript | 4.69
{v) Erlang 42.23 (i) Jruby 43.44 iv) Java f.01
{1} Lua 45.958 (i) TypeScript | 46.20 i) Perl .62
{i} Jruby 46.54 {i) Ruby 50,34 (i) Lua (.72
{i} Ruby 69,91 (i) Perl 65.79 iv) Erlang 7.20
{i} Python T75.88 {i) Python 71.90 i) Dart B.6d
{i) Perl 79.58 {i) Lua 8291 ii) Jruby 1984

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni L. Python: powerful language
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

